Skip to main content
Log in

Cryptanalysis of a Quantum Proxy Weak Blind Signature Scheme

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Recently, Cao et al. presented a weak blind signature scheme based on a genuinely entangled six -qubit state. However, we find there exists a security problem that the receiver of the signature can forge a valid signature without being caught. In order to show that, the detailed attack strategy and the potential improved ideas are proposed in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shor, P.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  2. Grover, L.K.: A fast quantum mechanical algorithm for database search. arXiv:quant-ph/9605043v3 (1996)

  3. Gisin, N., Ribordy, G., Tittel, W., et al.: Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002)

    Article  ADS  MATH  Google Scholar 

  4. Bennett, C.H., Brassard, G.: Quantum cryptography: Public key distribution and coin tossing. In: Proceedings IEEE International Conference on Computers, Systems, and Signal Processing, pp. 175–179. IEEE Press, New York (1984)

    Google Scholar 

  5. Ekert, A.K.: Quantum cryptography based on bell theorem. Phys. Rev. Lett. 67, 661–663 (1991)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  6. Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121–3124 (1992)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  7. Bennett, C.H., Brassard, G., et al.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  8. Gao, F., Guo, F.Z., Wen, Q.Y., et al.: Quantum key distribution without alternative measurements and rotations. Phys. Lett. A 349, 53–58 (2006)

    Article  ADS  MATH  Google Scholar 

  9. Cleve, R., Gottesman, D., Lo, H.K.: How to share a quantum secret. Phys. Rev. Lett. 83, 648–651 (1999)

    Article  ADS  Google Scholar 

  10. Hillery, M., Buzĕk, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829–1834 (1999)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  11. Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59, 162–168 (1999)

    Article  ADS  Google Scholar 

  12. Chen, X.B., Niu, X.X., Zhou, X.J., Yang, Y.X.: Multi-party quantum secret sharing with the single-particle quantum state to encode the information. Quantum Inf. Proc. 12(1), 365–380 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  13. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)

    Article  ADS  Google Scholar 

  14. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A 68, 042317 (2003)

    Article  ADS  Google Scholar 

  15. Lin, S., Wen, Q.Y., Zhu, F.C.: Quantum secure direct communication with X-type entangled states. Phys. Rev. A 78, 064304 (2008)

    Article  ADS  Google Scholar 

  16. Gao, F., Guo, F.Z., Wen, Q.Y., Zhu, F.C.: Comment on experimental demonstration of a quantum protocol for byzantine agreement and liar detection. Phys. Rev. Lett. 101, 208901 (2008)

    Article  ADS  Google Scholar 

  17. Chen, X.B., Yang, S., Xu, G., Su, Y., Yang, Y.X.: Cryptanalysis of the quantum state sharing protocol using four sets of W-class states. Int. J. Quantum Inform. 11(1), 1350010 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  18. Zhang, Y.S., Li, C.F., Guo, G.C.: Comment on quantum key distribution without alternative measurements. Phys. Rev. A 63, 036301 (2001)

    Article  ADS  Google Scholar 

  19. Gao, F., Qin, S.J., Wen, Q.Y., Zhu, F.C.: A simple participant attack on the bradler-dusek protocol. Quantum Inf. Comput. 7, 329 (2007)

    MATH  MathSciNet  Google Scholar 

  20. Gao, F., Wen, Q.Y., Zhu, F.C.: Teleportation attack on the QSDC protocol with a random basis and order. Chin. Phys. B 17, 3189 (2008)

    Article  ADS  Google Scholar 

  21. Gao, F., Qin, S.J., Guo, F.Z., Wen, Q.Y.: Dense-coding attack on three-party quantum key distribution protocols. IEEE J. Quantum Electron. 47, 630 (2011)

    Article  ADS  Google Scholar 

  22. Qin, S.J., Gao, F., Wen, Q.Y., Zhu, F.C.: Improving the security of multiparty quantum secret sharing against an attack with a fake signal. Phys. Lett. A 357, 101 (2006)

    Article  ADS  MATH  Google Scholar 

  23. W’ojcik, A.: Eavesdropping on the ping-pong quantum communication protocol. Phys. Rev. Lett. 90, 157901 (2003)

    Article  ADS  Google Scholar 

  24. W’ojcik, A.: Comment on quantum dense key distribution. Phys. Rev. A 71, 016301 (2005)

    Article  ADS  Google Scholar 

  25. Gao, F., Wen, Q.Y., Zhu, F.C.: Comment on: Quantum exam. Phys. Lett. A 360, 748 (2007)

    Article  ADS  Google Scholar 

  26. Gao, F., Lin, S., Wen, Q.Y., Zhu, F.C.: A special eavesdropping on one-sender versus n-receiver QSDC protocol. Chin. Phys. Lett. 25, 1561 (2008)

    Article  ADS  Google Scholar 

  27. Gao, F., Lin, S., Wen, Q.Y., Zhu, F.C.: Cryptanalysis of multiparty controlled quantum secure direct communication using Greenberger-Horne-Zeilinger state. Opt. Commun. 283, 192 (2010)

    Article  ADS  Google Scholar 

  28. Cai, Q.Y.: The “Ping-Pong” protocol can be attacked without eavesdropping. Phys. Rev. Lett. 91, 109801 (2003)

    Article  ADS  Google Scholar 

  29. Gao, F., Guo, F.Z., Wen, Q.Y., Zhu, F.C.: Consistency of shared reference frames should be reexamined. Phys. Rev. A 77, 014302 (2008)

    Article  ADS  Google Scholar 

  30. Gisin, N., Fasel, S., Kraus, B., Zbinden, H., Ribordy, G.: Trojan-horse attacks on quantum-key-distribution systems. Phys. Rev. A 73, 022320 (2006)

    Article  ADS  Google Scholar 

  31. Deng, F.G., Li, X.H., Zhou, H.Y., Zhang, Z.J.: Improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys. Rev. A 72, 044302 (2005)

    Article  ADS  Google Scholar 

  32. Chen, X.B., Yang, S., Su, Y., Yang, Y.X.: Cryptanalysis on the improved multiparty quantum secret sharing protocol based on the GHZ state. Phys. Scr. 86, 055002 (2012)

    Article  ADS  MATH  Google Scholar 

  33. Gottesman, D., Chuang, I.: Quantum digital signatures. arXiv:quant-ph/0105032v2 (2001)

  34. Buhrman, H., Cleve, R., Watrous, J., et al.: Quantum fingerprinting. Phys. Rev. Lett. 87, 167902 (2001)

    Article  ADS  Google Scholar 

  35. Buhrman, H., Crepeau, C., Gottesman, D., et al.: Authentication of quantum messages. IEEE Comput. Soc. Press (Washington DC), 449–458 (2002)

  36. Zeng, G.H., Keitel, C.H.: Arbitrated quantum-signature scheme. Phys. Rev. A 65, 042312 (2002)

    Article  ADS  Google Scholar 

  37. Li, Q., Chan, W.H., Long, D.Y.: Arbitrated quantum signature scheme using Bell states. Phys. Rev. A 79, 054307 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  38. Zou, X.F., Qiu, D.W.: Security analysis and improvements of arbitrated quantum signature schemes. Phys. Rev. A 82, 042325 (2010)

    Article  ADS  Google Scholar 

  39. Gao, F., Qin, S.J., Guo, F.Z., Wen, Q.Y.: Cryptanalysis of the arbitrated quantum signature protocols. Phys. Rev. A 84, 022344 (2011)

    Article  ADS  Google Scholar 

  40. Choi, J.W., Chang, K.Y., Hong, D.: Security problem on arbitrated quantum signature schemes. Phys. Rev. A 84, 062330 (2011)

    Article  ADS  Google Scholar 

  41. Hwang, T., Luo, Y.P., Chong, S.K.: Comment on: security analysis and improvements of arbitrated quantum signature schemes. Phys. Rev. A 85, 056301 (2012)

    Article  ADS  Google Scholar 

  42. Yang, Y.G.: Multi-proxy quantum group signature scheme with threshold shared verification. Chin. Phys. B 17, 415 (2008)

    Article  ADS  Google Scholar 

  43. Yang, Y.G., Wen, Q.Y.: Threshold proxy quantum signature scheme with threshold shared verification. Sci. Chin. Ser. G: Phys. Mech. Astron. 51, 1079–1088 (2008)

    Article  ADS  MATH  Google Scholar 

  44. Yang, Y.G., Wang, Y., Teng, Y.W., Chai, H.P., Wen, Q.Y.: Scalable arbitrated quantum signature of classical messages with multi-signers. Commun. Theor. Phys. 54, 84 (2010)

    Article  ADS  MATH  Google Scholar 

  45. Yang, Y.G., Wen, Q.Y.: Arbitrated quantum signature of classical messages against collective amplitude damping noise. Opt. Commun. 283, 3198–3201 (2010)

    Article  ADS  Google Scholar 

  46. Wen, X.J., Tian, Y., Ji, L.P., Niu, X. M.: A group signature scheme based on quantum teleportation. Phys. Scr. 81, 055001 (2010)

    Article  ADS  MATH  Google Scholar 

  47. Wen, X.J.: Quantum group blind signature scheme without entanglement. Phys. Scr. 82, 065403 (2010)

    Article  MATH  Google Scholar 

  48. Wang, T.Y., Wen, Q.Y.: Fair quantum blind signatures. Chin. Phys. B 19, 060307 (2010)

    Article  ADS  Google Scholar 

  49. Wang, T.Y., Wei, Z.L.: One-time proxy signature based on quantum cryptography. Quantum Inf. Proc. doi:10.1007/s11128-011-0258-6 (2012)

  50. Cao, H.J., Zhu, Y.Y., Li, P.F.: A quantum proxy weak blind signature scheme. Int. J. Theor. Phys. 53, 419–425 (2014)

    Article  MATH  Google Scholar 

  51. Zhang, K.J., Song, T.T., Zuo, H.J., Zhang, W.W.: A secure quantum group signature scheme based on Bell states. Phys. Scr. 87, 045012 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work is supported by NSFC (Grant Nos. 61300181, 61272057, 61202434, 61170270, 61100203, 61121061,61309029), Beijing Natural Science Foundation (Grant No. 4122054), Beijing Higher Education Young Elite Teacher Project (Grant Nos. YETP0475, YETP0477).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke-Jia Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, KJ., Jia, HY. Cryptanalysis of a Quantum Proxy Weak Blind Signature Scheme. Int J Theor Phys 54, 582–588 (2015). https://doi.org/10.1007/s10773-014-2250-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-014-2250-2

Keywords

Navigation