Skip to main content
Log in

Novel Multiparty Controlled Bidirectional Quantum Secure Direct Communication Based on Continuous-variable States

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

A novel multiparty controlled bidirectional quantum secure direct communication protocol combining continuous-variable states with qubit block transmission is proposed. Two legitimate communication parties encode their own secret information into entangled optical modes with translation operations, and the secret information of each counterpart can only be recovered under the permission of all controllers. Due to continuous-variable states and block transmission strategy, the proposed protocol is easy to realize with perfect qubit efficiency. Security analyses show that the proposed protocol is free from common attacks, including the man-in-the-middle attack.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Beige, A., Englert, B.G., Kurtsiefer, C., et al.: Secure communication with single-photon two-qubit states. J. Phys. A-Math. Gen. 35(28), 407–413 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Boströem, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89(18), 1879021–4 (2002)

    Google Scholar 

  3. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Eingstein-Podolsky-Rosen pair block. Phys. Rev. A 68(4), 423171–6 (2003)

    Google Scholar 

  4. Deng, F.G., Li, X.H., Li, C.Y., et al.: Economical quantum secure direct communication network with single photons. Chin. Phys. 16(12), 3553–3559 (2007)

    Article  ADS  Google Scholar 

  5. Han, L.F., Liu, Y.M., Liu, J., Zhang, Z.J.: Multiparty quantum secret sharing of secure direct communication using single photons. Opt. Commun. 281(9), 2690–2694 (2008)

    Article  ADS  Google Scholar 

  6. Shi, G.F., Xi, X.Q., Hu, M.L., et al.: Quantum dialogue by using single photons. Opt. Commun. 283(9), 1984–1986 (2010)

    Article  ADS  Google Scholar 

  7. Huang, W., Wen, Q.Y., Liu, B., et al.: Deterministic secure quantum communication with collective detection using single photons. Int. J. Theor. Phys. 51 (9), 2787–2797 (2012)

    Article  MATH  Google Scholar 

  8. Zhou, N.R., Hua, T.X., Wu, G.T., et al.: Single-photon secure quantum dialogue protocol without information leakage. Int. J. Theor. Phys. 53(11), 3829–3837 (2014)

    Article  MATH  Google Scholar 

  9. Jin, X.R., Ji, X., Zhang, Y.Q., et al.: Three-party quantum secure direct communication based on GHZ states. Phys. Lett. A 354(1-2), 67–70 (2006)

    Article  ADS  Google Scholar 

  10. Guo, Y., Chen, Z.G., Zeng, G.H.: Secure deterministic communication scheme based on quantum remote state preparation. Chin. Phys. 16(9), 2549–08 (2007)

    Article  ADS  Google Scholar 

  11. Lin, S., Wen, Q.Y., Gao, F., Zhu, F.C.: Quantum secure direct communication with X-type entangled states. Phys. Rev. A 78(6), 064–304 (2008)

    Article  Google Scholar 

  12. Chong, S.K., Hwang, T.: The enhancement of three-party simultaneous quantum secure direct communication scheme with EPR pairs. Opt. Commun. 284(1), 515–518 (2011)

    Article  ADS  Google Scholar 

  13. Zhou, N.R., Wu, G.T., Gong, L.H., Liu, S.Q.: Secure quantum dialogue protocol based on W states without information leakage. Int. J. Theor. Phys. 52(9), 3201–3211 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Yadav, P., Srikanth, R., Pathak, A.: Two-step orthogonal-state-based protocol of quantum secure direct communication with the help of order-rearrangement technique. Quantum Inf. Process. 13(12), 2731–2743 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Liu, Z.H., Chen, H.W., Wang, D., Li, W.Q.: Cryptanalysis and improvement of three-particle deterministic secure and high bit-rate direct quantum communication protocol. Quantum Inf. Process. 13(6), 1345–1351 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Li, W.L., Chen, J.B., Wang, X.L., Li, C.: Quantum secure direct communication achieved by using multi-entanglement. Int. J. Theor. Phys. 54(1), 100–105 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Wang, J., Zhang, Q., Tang, C.J.: Multiparty controlled quantum secure direct communication using Greenberger-horne-zeilinger state. Opt. Commun. 266(2), 732–737 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  18. Wang, J., Chen, H.Q., Zhang, Q., Tang, C.J.: Multiparty controlled quantum secure direct communication protocol. Acta Phys. Sin. 56(2), 673–677 (2007)

    MathSciNet  Google Scholar 

  19. Wang, T.Y., Qin, S.J., Wen, Q.Y., Zhu, F.C.: Analysis and improvement of multiparty controlled quantum secure direct communication protocol. Acta Phys. Sin. 57(12), 7452–7456 (2008)

    Google Scholar 

  20. Chen, X.B., Wang, T.Y., Du, J.Z., et al.: Controlled quantum secure direct communication with quantum encryption. Int. J. Quantum Inf. 6(3), 543–551 (2008)

    Article  MATH  Google Scholar 

  21. Xiu, X.M., Dong, L., Gao, Y.J., Chi, F.: Controlled deterministic secure quantum communication using five-qubit entangled states and two-step security test. Opt. Commun. 282(2), 333–337 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  22. Gao, F., Qin, S.J., Wen, Q.Y., Zhu, F.C.: Cryptanalysis of multiparty controlled quantum secure direct communication using Greenberger-Horne-Zeilinger state. Opt. Commun. 283(1), 192–195 (2010)

    Article  ADS  Google Scholar 

  23. Tseng, H.Y., Tsai, C.W., Hwang, T.: Controlled deterministic secure quantum communication based on quantum search algorithm. Int. J. Theor. Phys. 51 (8), 2447–2454 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kao, S.H., Hwang, T.: Multiparty controlled quantum secure direct communication based on quantum search algorithm. Quantum Inf. Process. 12(12), 3791–3805 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Chang, Y., Zhang, S.B., Yan, L.L., Sheng, Z.W.: A multiparty controlled bidirectional quantum secure direct communication and authentication protocol based on EPR pairs. Chin. Phys. Lett. 30(6), 060–301 (2013)

    Article  Google Scholar 

  26. Chang, Y., Zhang, S.B., Yan, L.L., Han, G.H.: Controlled deterministic secure quantum communication protocol based on three-particle GHZ states in X-basis. Commun. Theor. Phys. 63(3), 285–290 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  27. Zhou, N.R., Song, H.C., Gong, L.H., Liu, Y.: Continuous-variable quantum deterministic key distribution protocol based on quantum teleportation. Acta Phys. Sin. 61(15), 214–203 (2012)

    Google Scholar 

  28. Huang, P., He, G.Q., Fang, J., Zeng, G.H.: Performance improvement of continuous-variable quantum key distribution via photon subtraction. Phys. Rev. A 87(1), 012–317 (2013)

    Article  Google Scholar 

  29. Huang, P., He, G.Q., Zeng, G.H.: Bound on noise of coherent source for secure continuous-variable quantum key distribution. Int. J. Theor. Phys. 52(5), 1572–1582 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  30. Wang, Y.J., Huang, P., Guo, Y., Huang, D.Z.: Photon-monitoring attack on continuous-variable quantum key distribution with source in middle. Quantum Inf. Process. 13(12), 2745–2757 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Wang, T., Yu, S., Zhang, Y.C., et al.: Improving the maximum transmission distance of continuous-variable quantum key distribution with noisy coherent states using a noiseless amplifier. Phys. Lett. A 378(38–39), 2808–2812 (2014)

    Article  ADS  MATH  Google Scholar 

  32. Weedbrook, C., Lance, A.M., Bowen, W.P., et al.: Quantum cryptography without switching. Phys. Rev. Lett. 93(17), 170–504 (2004)

    Article  Google Scholar 

  33. He, G.Q., Zhu, J., Zeng, G.H.: Quantum secure communication using continuous variable Einstein-Podolsky-Rosen correlations. Phys. Rev. A 73(1), 012–314 (2006)

    Google Scholar 

  34. Gallager, R.G.: Low-density parity-check codes. IRE Trans. Inform. Theory 8 (1), 21–28 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  35. Berrou, C., Glavieux, A.: Near optimum error correcting coding and decoding: Turb-codes. IEEE Trans. Commun. 44(10), 1261–1271 (1996)

    Article  Google Scholar 

  36. Song, H.C., Gong, L.H., Zhou, N.R.: Continuous-variable quantum deterministic key distribution protocol based on quantum teleportation. Acta Phys. Sin. 61(15), 154–206 (2012)

    Google Scholar 

  37. Lo, H.K., Ma, X., Chen, K.: Decoy state quantum key distribution. Phys. Rev. Lett. 94(23), 230–504 (2005)

    Article  Google Scholar 

  38. Chong, S.K., Tsai, C.W., Hwang, T.: Improvement on quantum key agreement protocol with maximally entangled states. Int. J. Theor. Phys. 50(6), 1793–1802 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (grant nos. 61561033 and 61462061), the Foundation for Young Scientists of Jiangxi Province (Jinggang Star) (grant no. 20122BCB23002), the Natural Science Foundation of Jiangxi Province, China (grant no. 20151BAB207002), and the Research Foundation of the Education Department of Jiangxi Province (grant no. GJJ14138).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Hua Gong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, ZB., Gong, LH. & Wen, RH. Novel Multiparty Controlled Bidirectional Quantum Secure Direct Communication Based on Continuous-variable States. Int J Theor Phys 55, 1447–1459 (2016). https://doi.org/10.1007/s10773-015-2784-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-015-2784-y

Keywords

Navigation