Skip to main content
Log in

Efficient Three-Party Quantum Dialogue Protocol Based on the Continuous Variable GHZ States

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Based on the continuous variable GHZ entangled states, an efficient three-party quantum dialogue protocol is devised, where each legitimate communication party could simultaneously deduce the secret information of the other two parties with perfect efficiency. The security is guaranteed by the correlation of the continuous variable GHZ entangled states and the randomly selected decoy states. Furthermore, the three-party quantum dialogue protocol is directly generalized to an N-party quantum dialogue protocol by using the n-tuple continuous variable GHZ entangled states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Beige, A., Englert, B. G., Kurtsiefer, C., et al.: Secure communication with single-photon two-qubit states. J. Phys. A-Math. Gen. 35(28), 407–413 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Deng, F. G., Long, G. L., Liu, X. S.: Two-step quantum direct communication protocol using the Eingstein-Podolsky-Rosen pair block. Phys. Rev. A 68(4), 423171 (2003)

    Google Scholar 

  3. Lin, S., Wen, Q. Y., Gao, F., Zhu, F.C.: Quantum secure direct communication with X-type entangled states. Phys. Rev. A 78(6), 064304 (2008)

    Article  ADS  Google Scholar 

  4. Liu, Z. H., Chen, H. W., Wang, D., Li, W. Q.: Cryptanalysis and improvement of three-particle deterministic secure and high bit-rate direct quantum communication protocol. Quantum. Inf. Process. 13(6), 1345–1351 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Gao, T., Yan, F. L., Wang, Z. X.: Deterministic secure direct communication using GHZ states and swapping quantum entanglement. J. Phys. A: Math. Gen. 38 (25), 5761 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Deng, F. G., Li, X. H., Li, C. Y., et al.: Multiparty quantum secret report. Chinese Phys. Lett. 23(7), 1676–1679 (2006)

    Article  ADS  Google Scholar 

  7. Jin, X. R., Ji, X., Zhang, S., et al.: Three-party quantum secure direct communication based on GHZ states. Phys. Lett. A 354(1-2), 67–70 (2006)

    Article  ADS  Google Scholar 

  8. Man, Z. X., Xia, Y. J.: Improvement of security of three-party quantum secure direct communication based on GHZ states. Chinese Phys. Lett. 24(1), 15–18 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  9. Chamoli, A., Bhandari, C. M.: Secure direct communication based on ping-pong protocol. Quantum Inf. Process. 8(4), 347–356 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Wang, M. Y., Yan, F. L.: Three-party simultaneous quantum secure direct communication scheme with EPR pairs. Chinese Phys. Lett. 24(9), 2486–2488 (2007)

    Article  ADS  Google Scholar 

  11. Chong, S. K., Hwang, T.: The enhancement of three-party simultaneous quantum secure direct communication scheme with EPR pairs. Opt. Commun. 284(1), 515–518 (2011)

    Article  ADS  Google Scholar 

  12. Yin, X. R., Ma, W. P., Shen, D. S., Hao, C. Y.: Efficient three-party quantum secure direct communication with EPR Pairs. J. Quantum Inf. Sci. 3(01), 1–5 (2013)

    Article  Google Scholar 

  13. Bennett, C. H., Brassard, G., Crepeau, C., et al.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70(13), 1895 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Li, X. H., Deng, F. G., Zhou, H. Y.: Efficient quantum key distribution over a collective noise channel. Phys. Rev. A 78(2), 022321 (2008)

    Article  ADS  Google Scholar 

  15. Gao, F., Qin, S. J., Wen, Q. Y., Zhu, F. C.: Cryptanalysis of multiparty controlled quantum secure direct communication using Greenberger-Horne-Zeilinger state. Opt. Commun. 283(1), 192–195 (2010)

    Article  ADS  Google Scholar 

  16. Zhou, N. R., Hua, T. X., Wu, G. T., et al.: Single-photon secure quantum dialogue protocol without information leakage. Int. J. Theor. Phys. 53(11), 3829–3837 (2014)

    Article  MATH  Google Scholar 

  17. Wen, J. J., Yeon, K. H., Zhang, L. L., et al.: Scheme for generating GHZ-type and W-type entangled squeezed vacuum states in free-travelling optical fields. Opt. Commun. 358(1), 54–58 (2016)

    Article  ADS  Google Scholar 

  18. Vaidman, L.: Teleportation of quantum states. Phys. Rev. A 49(2), 1473–1476 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  19. Braunstein, S. L., Kimble, H. J.: Teleportation of continuous quantum variables. Phys. Rev. Lett. 80(4), 869–872 (1998)

    Article  ADS  Google Scholar 

  20. He, G. Q., Zhu, J., Zeng, G. H.: Quantum secure communication using continuous variable Einstein-Podolsky-Rosen correlations. Phys. Rev. A 73(1), 012314 (2006)

    Article  ADS  Google Scholar 

  21. Zhou, N. R., Song, H. C., Gong, L. H., Liu, Y.: Continuous-variable quantum deterministic key distribution protocol based on quantum teleportation. Acta Phys. Sin. 61(15), 154206 (2012)

    Google Scholar 

  22. Huang, P., He, G. Q., Fang, J., Zeng, G. H.: Performance improvement of continuous-variable quantum key distribution via photon subtraction. Phys. Rev. A 87(1), 012317 (2013)

    Article  ADS  Google Scholar 

  23. Huang, P., He, G. Q., Zeng, G. H.: Bound on noise of coherent source for secure continuous-variable quantum key distribution. Int. J. Theor. Phys. 52(5), 1572–1582 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Wang, T., Yu, S., Zhang, Y. C., et al.: Improving the maximum transmission distance of continuous variable quantum key distribution with noisy coherent states using a noiseless amplifier. Phys. Lett. A 378(38-39), 2808–2812 (2014)

    Article  ADS  MATH  Google Scholar 

  25. Wang, S., Hou, L. L., Chen, X. F., Xu, X. F.: Continuous-variable quantum teleportation with non-Gaussian entangled states generated via multiple-photon subtraction and addition. Phys. Rev. A 91(6), 063832 (2015)

    Article  ADS  Google Scholar 

  26. Huang, P., Lin, D., Huang, D., Zeng, G. H.: Security of continuous-variable quantum key distribution with imperfect phase compensation. Int. J. Theor. Phys. 54 (8), 2613–2622 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. Nguyen, B. A.: Quantum dialogue. Phys. Lett. A 328(1), 6–10 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Ji, X., Zhang, S.: Secure quantum dialogue based on single-photon. Chin. Phys. 15(7), 1418–1420 (2006)

    Article  ADS  Google Scholar 

  29. Gao, G.: Two quantum dialogue protocols without information leakage. Opt. Commun. 283(10), 2288–2293 (2010)

    Article  ADS  Google Scholar 

  30. Zhou, N. R., Wu, G. T., Gong, L. H., Liu, S. Q.: Secure quantum dialogue protocol based on W states without information leakage. Int. J. Theor. Phys. 52(9), 3204–3211 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  31. Luo, Y. P., Lin, C. Y., Hwang, T.: Efficient quantum dialogue using single photons. Quantum Inf. Process. 13(11), 2451–2461 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  32. Ye, T. Y.: Robust quantum dialogue based on the entanglement swapping between any two logical Bell states and the shared auxiliary logical Bell state. Quantum Inf. Process. 14(4), 1469–1486 (2015)

    Article  ADS  MATH  Google Scholar 

  33. Ye, T. Y.: Fault-tolerant authenticated quantum dialogue using logical Bell states. Quantum Inf. Process. 14(9), 3499–3514 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Zhang, Q., Goebel, A., Wagenknecht, C., et al.: Experimental quantum teleportation of a two-qubit composite system. Nature Phys. 2(10), 678–682 (2006)

    Article  ADS  Google Scholar 

  35. Loock, P. V., Braunstein, S. L.: Multipartite entanglement for continuous variables: a quantum teleportation network. Phys. Rev. Lett. 84(15), 3482–3485 (2000)

    Article  ADS  Google Scholar 

  36. Gallager, R. G.: Low-density parity-check codes. IRE Trans. Inform. Theory 8 (1), 21–28 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  37. Berrou, C., Glavieux, A.: Near optimum error correcting coding and decoding: Turb-codes. IEEE Trans. Commun. 44(10), 1261–1271 (1996)

    Article  Google Scholar 

  38. Lo, H. K., Ma, X., Chen, K.: Decoy state quantum key distribution. Phys. Rev. Lett. 94(23), 230504 (2005)

    Article  ADS  Google Scholar 

  39. Chong, S. K., Tsai, C. W., Hwang, T.: Improvement on quantum key agreement protocol with maximally entangled states. Int. J. Theor. Phys. 50(6), 1793–1802 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  40. Kao, S. H., Hwang, T.: Multiparty controlled quantum secure direct communication based on quantum search algorithm. Quantum Inf. Process. 12(12), 3791–3805 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (grant nos. 61561033 and 61462061), the Foundation for Young Scientists of Jiangxi Province (Jinggang Star) (grant no. 20122BCB23002), the Natural Science Foundation of Jiangxi Province, China (grant no. 20151BAB207002), and the Research Foundation of the Education Department of Jiangxi Province (grant no. GJJ14138).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nan-Run Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, ZB., Gong, LH., Zhu, QB. et al. Efficient Three-Party Quantum Dialogue Protocol Based on the Continuous Variable GHZ States. Int J Theor Phys 55, 3147–3155 (2016). https://doi.org/10.1007/s10773-016-2944-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-016-2944-8

Keywords

Navigation