Skip to main content
Log in

Quantum Realization of Arnold Scrambling for IFRQI

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

This paper is concerned with the feasibility of the Arnold scrambling based on Improved Flexible Representation of Quantum Images (IFRQI). Firstly, the flexible representation of quantum image is updated to the improved flexible representation of quantum image (IFRQI) to represent a quantum image with arbitrary size L × B. Then, by making use of Control-NOT gate and Adder-Modular operation, the concrete quantum circuit of Arnold scrambling for IFRQI is designed. Simulation results show the effectiveness of the proposed circuit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Benioff, P.: The computer as a physical system: A microscopic quantum mechanical Hamiltonian models of computers as represented by Turing machines. J. Stat. Phys. 22(5), 563–591 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  2. Feynman, R.P.: Simulating physics with computers. Int. J. Theor. Phys. 21(6/7), 467–488 (1982)

    Article  MathSciNet  Google Scholar 

  3. Venegas-Andraca, S.E., Bose, S.: Storing, processing and retrieving an image using quantum mechanics. Proc. SPIE Conf. Quantum Inf. Comput. 5105, 137–147 (2003)

    ADS  Google Scholar 

  4. Venegas-Andraca, S.E., Ball, J.L.: Processing images in entangled quantum systems. Quantum Inf. Process. 9(1), 1–11 (2010)

    Article  MathSciNet  Google Scholar 

  5. Latorre, J.I.: Image compression and entanglement arXiv:hep-th/0510031(2005)

  6. Le, P.Q., Dong, F., Hirota, K.: A flexible representation of quantum images for polynomial preparation, image compression and processing operations. Quantum Inf. Process. 10(1), 63–84 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Sun, B., Le, P.Q., Iliyasu, A.M.: A multi-channel representation for images on quantum computers using the RGB α color space. Proceedings of the IEEE 7th International Symposium on Intelligent Signal Processing, 1–6 (2011)

  8. Zhang, Y., Lu, K., Gao, Y.H., Xu, K.: A novel quantum representation for log-polar images. Quantum Inf. Process. 12(9), 3103–3126 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Zhang, Y., Lu, K., Gao, Y.H., Wang, M.: NEQR: A novel enhanced quantum representation of digital images. Quantum Inf. Process. 12(8), 2833–2860 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Jiang, N., Wang, J., Mu, Y.: Quantum image scaling up based on nearest-neighbor interpolation with integer scaling ratio. Quantum Inf. Process. doi:10.1007/s11128-015-1099-5

  11. Iliyasu, A.M., Le, P.Q., Dong, F., et al.: Watermarking and authentication of quantum images based on restricted geometric transformation. Inf. Sci. 186(1), 126–149 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Zhang, W.W., Gao, F., Liu, B., Jia, H.Y., Wen, Q., Chen, H.: A quantum watermark protocol. Int. J. Theor. Phys. 52(2), 504–513 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Zhang, W.W., Gao, F., Liu, B., Wen, Q., Chen, H.: A watermark strategy for quantum images based on quantum Fourier transform. Quantum Inf. Process. 12 (2), 793–803 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Zhou, R.G., Wu, Q., Zhang, M.Q., et al.: Quantum image encryption and decryption algorithms based on quantum image gemotric transformations. Int. J. Theor. Phys. 52(6), 1802–1817 (2013)

    Article  MathSciNet  Google Scholar 

  15. Yang, Y.G., Xia, J., Jia, X., et al.: Novel image encryption/decryption based on quantum Fourier transform and double phase encoding. Quantum Inf. Process. 12(11), 3477–3493 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Yang, Y.G., Jia, X., Sun, S., et al.: Quantum cryptographic algorithm for color images using quantum Fourier transform and double random-phase encoding. Inf. Sci. 277, 445–457 (2014)

    Article  Google Scholar 

  17. Song, X.H., Wang, S., El-latif, A.A.A., Niu, X.M.: Quantum image encryption based on restricted geometric and color transformations. Quantum Inf. Process. 13(8), 1765–1787 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Le, P.Q., Iliyasu, A.M., Dong, F.Y., Hirota, K.: Fast geometric transformations on quantum images. Int. J. App. Math. 40(3), 113–123 (2010)

    MathSciNet  MATH  Google Scholar 

  19. Jiang, N., Wu, W.Y., Wang, L.: The quantum realization of Arnold and Fibonacci image scrambling. Quantum Inf. Process. 13(5), 1223–1236 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Jiang, N., Wang, L.: Analysis and improvement of the quantum Arnold image scrambling. Quantum Inf. Process. 13(5), 1545–1551 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Jiang, N., Wang, L., Wu, W.Y.: Quantum Hilbert image scrambling. Int. J. Theor. Phys. 53(7), 2463–2484 (2014)

    Article  MATH  Google Scholar 

  22. Vlatko, V., Adriano, B., Artur, E.: Quantum networks for elementary arithmetic operations. Phys. Rev. A 54(1), 147–153 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  23. Barenco, A., Bennett, C.H., Cleve, R., DiVincenzp, D.P., Margolus Shor, P., Sleator, T., Smolin, J.A., Weinfurther, H.: Elementary gates for quantum computation. Phys. Rev. A 52(5), 3457 (1995)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Science Foundation of China (61301099, 60832010, 61501148 and 61361166006). We thank the previous researchers’ work about nearest neighbor interpolation method for INEQR.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianzhi Sang or Shen Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sang, J., Wang, S., Shi, X. et al. Quantum Realization of Arnold Scrambling for IFRQI. Int J Theor Phys 55, 3706–3721 (2016). https://doi.org/10.1007/s10773-016-3000-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-016-3000-4

Keywords

Navigation