Skip to main content
Log in

Asymmetric Bidirectional Controlled Teleportation via Seven-qubit Cluster State

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We propose a new protocol of asymmetric bidirectional controlled teleportation by using a seven-qubit cluster state as the quantum channel. That is to say Alice wants to transmit an arbitrary single-qubit state to Bob and Bob wants to transmit an arbitrary two qubit state to Alice via the control of the supervisor Charlie. One only need perform the Bell-state measurements and single-qubit measurement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Shor, P.W.: Algorithms for quantum computation: Discrete logarithms and factoring[C]. Foundations of Computer Science, 1994 Proceedings., 35th Annual Symposium on IEEE, 124–134 (1994)

  2. Grover, L.K.: Quantum mechanics helps in searching for a needle in a haystack [J]. Phys. Rev. Lett. 79(2), 325 (1997)

    Article  ADS  Google Scholar 

  3. Long, G.L.: Grover algorithm with zero theoretical failure rate[J]. Phys. Rev. A 64(2), 022307 (2001)

    Article  ADS  Google Scholar 

  4. Toyama, F.M., van Dijk, W., Nogami, Y.: Quantum search with certainty based on modified Grover algorithms: optimum choice of parameters[J]. Quantum Inf. Process 12(5), 1897–1914 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Castagnoli, G.: arXiv preprint, arXiv:1308.5077 (2013)

  6. Bennett, C.H., Brassard, B.: Quantum cryptography: public key distribution and coin toss- ing. In: proceedings of IEEE international conference on computers, systems and signal Pro- cessing, Bangalore, India (IEEE New York), pp. 175–179 (1984)

  7. Ekert, A.K.: Quantum cryptography based on Bells theorem[J]. Phys. Rev. Lett. 67(6), 661 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Bennett, C.H., Brassard, G., Mermin, N.D.: Quantum cryptography without Bells theorem[J]. Phys. Rev. Lett. 68(5), 557 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Deng, F.G., Long, G.L.: Controlled order rearrangement encryption for quantum key distribution[J]. Phys. Rev. A 68(4), 042315 (2003)

    Article  ADS  Google Scholar 

  10. Hwang, W.Y.: Quantum key distribution with high loss: toward global secure communication[J]. Phys. Rev. Lett. 91(5), 057901 (2003)

    Article  ADS  Google Scholar 

  11. Deng, F.G., Long, G.L.: Bidirectional quantum key distribution protocol with practical faint laser pulses[J]. Phys. Rev. A 70(1), 012311 (2004)

    Article  ADS  Google Scholar 

  12. Wang, X.B.: Beating the photon-number-splitting attack in practical quantum cryptography[J]. Phys. Rev. Lett. 94(23), 230503 (2005)

    Article  ADS  Google Scholar 

  13. Lo, H.K., Ma. X., Chen, K.: Decoy state quantum key distribution[J]. Phys. Rev. Lett. 94(23), 230504 (2005)

    Article  ADS  Google Scholar 

  14. Li, X.H., Deng, F.G., Zhou, H.Y.: Efficient quantum key distribution over a collective noise channel[J]. Phys. Rev. A 78(2), 022321 (2008)

    Article  ADS  Google Scholar 

  15. Lo, H.K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution[J]. Phys. Rev. Lett. 108(13), 130503 (2012)

    Article  ADS  Google Scholar 

  16. Hillery, M., Buzek, V., Berthiaume, A.: Phys. Rev. A 59, 1829 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  17. Karlsson, A., Koashi, M., Imoto, N.: Phys. Rev. A 59, 162 (1999)

    Article  ADS  Google Scholar 

  18. Cleve, R., Gottesman, D., Lo, H.K.: Phys. Rev. Lett 83, 648 (1999)

    Article  ADS  Google Scholar 

  19. Xiao, L., Long, G.L., Deng, F.G., et al.: Efficient multiparty quantum-secret-sharing schemes[J]. Phys. Rev. A 69(5), 052307 (2004)

    Article  ADS  Google Scholar 

  20. Lance, A.M., Symul, T., Bowen, W.P., et al.: Tripartite quantum state sharing[J]. Phys. Rev. Lett 92(17), 177903 (2004)

    Article  ADS  Google Scholar 

  21. Deng, F.G., Zhou, H.Y., Long, G.L.: Circular quantum secret sharing[J]. J. Phys. A Math. Gen. 39(45), 14089 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme[J]. Phys. Rev. A, 65(3), 032302 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  23. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block[J]. Phys. Rev. A 68(4), 042317 (2003)

    Article  ADS  Google Scholar 

  24. Deng, F.G., Long, G.L.: Secure direct communication with a quantum one-time pad[J]. Phys. Rev. A 69(5), 052319 (2004)

    Article  ADS  Google Scholar 

  25. Wang, C., Deng, F.G., Li, Y.S., et al.: Quantum secure direct communication with high-dimension quantum superdense coding[J]. Phys. Rev. A 71(4), 044305 (2005)

    Article  ADS  Google Scholar 

  26. Wang, T.J., Li, T., Du, F.F., Deng, F.G.: Phys. Lett. 28, 040305 (2011)

    Google Scholar 

  27. Gu, B., Zhang, C.Y., Cheng, G.S., et al.: Robust quantum secure direct communication with a quantum one-time pad over a collective-noise channel[J]. Sci. China Phys. Mech. Astron. 54(5), 942–947 (2011)

    Article  ADS  Google Scholar 

  28. Bin, G., Yu-Gai, H., Xia, F., et al.: A two-step quantum secure direct communication protocol with hyperentanglement[J]. Chin. Phys. B 20(10), 100309 (2011)

    Article  Google Scholar 

  29. Gu, B., Huang, Y., Fang, X., et al.: Robust quantum secure communication with spatial quantum states of single photons[J]. Int. J. Theor. Phys. 52(12), 4461–4469 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  30. Zhang, Q., Li, C., Li, Y., et al.: Quantum secure direct communication based on four-qubit cluster states[J]. Int. J. Theor. Phys. 52(1), 22–27 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  31. Chang, Y., Xu, C.X., Zhang, S.B., et al.: Quantum secure direct communication and authentication protocol with single photons[J]. Chin. Sci. Bull. 58 (36), 4571–4576 (2013)

    Article  Google Scholar 

  32. Zou, X.F., Qiu, D.W.: Three-step semiquantum secure direct communication protocol[J]. Sci. China Phys. Mech. Astron. 57(9), 1696–1702 (2014)

    Article  ADS  Google Scholar 

  33. Zheng, C., Long, G.F.: Quantum secure direct dialogue using Einstein-Podolsky-Rosen pairs[J]. Sci. China Phys. Mech. Astron. 57(7), 1238–1243 (2014)

    Article  ADS  Google Scholar 

  34. Su, X.: Applying Gaussian quantum discord to quantum key distribution[J]. Chin. Sci. Bull. 59(11), 1083–1090 (2014)

    Article  Google Scholar 

  35. Zhang, C.M., Song, X.T., Treeviriyanupab, P., et al.: Delayed error verification in quantum key distribution[J]. Chin. Sci. Bull. 59(23), 2825–2828 (2014)

    Article  Google Scholar 

  36. Zhang, C.X., et al.: Sci China-Phys mecha and Astro 57, 2043–2048 (2014)

    Article  ADS  Google Scholar 

  37. Xu, J.S., Li, C.F.: Quantum integrated circuit: classical characterization[J]. Sci. Bull. 60(1), 141–141 (2015)

    Article  Google Scholar 

  38. Xiaom, L., Long, G.L., Deng, F.G., et al.: Efficient multiparty quantum-secret-sharing schemes[J]. Phys. Rev. A 69(5), 052307 (2004)

    Article  ADS  Google Scholar 

  39. Xiao, L., Long, G.L., Deng, F.G., et al.: Efficient multiparty quantum-secret-sharing schemes[J]. Phys. Rev. A 69(5), 052307 (2004)

    Article  ADS  Google Scholar 

  40. Wang, C., Deng, F.G., Li, Y.S., et al.: Quantum secure direct communication with high-dimension quantum superdense coding[J]. Phys. Rev. A 71(4), 044305 (2005)

    Article  ADS  Google Scholar 

  41. Deng, F.G., Li, X.H., Zhou, H.Y., et al.: Improving the security of multiparty quantum secret sharing against Trojan horse attack[J]. Phys. Rev. A 72(4), 044302 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  42. Wang, C., Deng, F.G., Long, G.L.: Multi-step quantum secure direct communication using multi-particle greenCHorneCZeilinger state[J]. Opt. Commun. 253(1), 15–20 (2005)

    Article  ADS  Google Scholar 

  43. Zhang, Z.J., Man, Z.X.: Many-agent controlled teleportation of multi-qubit quantum information[J]. Phys. Lett. A 341(1), 55–59 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Li, C.Y., Li, X.H., Deng, F.G., et al.: Complete multiple round quantum dense coding with quantum logical network[J]. Chin. Sci. Bull. 52(9), 1162–1165 (2007)

    Article  Google Scholar 

  45. Li, X., Deng, F.: Controlled teleportation[J]. Frontiers of Computer Science in China 2(2), 147–160 (2008)

    Article  Google Scholar 

  46. Zuo, X.Q., Liu, Y.M., Zhang, W., et al.: Simpler criterion on W state for perfect quantum state splitting and quantum teleportation[J]. Sci. China Ser. G Phys. Mech. Astron. 52(12), 1906–1912 (2009)

    Article  ADS  Google Scholar 

  47. Yin, X.F., Liu, Y.M., Zhang, Z.Y., et al.: Perfect teleportation of an arbitrary three-qubit state with the highly entangled six-qubit genuine state[J]. Sci. China Ser. G Phys. Mech. Astron. 53(11), 2059–2063 (2010)

    Article  ADS  Google Scholar 

  48. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wooters, W.K.: Phys. Rev. Lerr. 70, 1895 (1993)

    ADS  Google Scholar 

  49. Zeng, B., Zhang, P.: Remote-state preparation in higher dimension and the parallelizable manifold Sn-1[J]. Phys. Rev. A 65(2), 022316 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  50. Peng, X., Zhu, X., Fang, X., et al.: Experimental implementation of remote state preparation by nuclear magnetic resonance[J]. Phys. Lett. A 306(5), 271–276 (2003)

    Article  ADS  Google Scholar 

  51. Yan, F., Wang, D.: Probabilistic and controlled teleportation of unknown quantum states[J]. Phys. Lett. A 316(5), 297–303 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. Yang, C.P., Chu, S.I., Han, S.: Efficient many-party controlled teleportation of multiqubit quantum information via entanglement[J]. Phys. Rev. A 70(2), 022329 (2004)

    Article  ADS  Google Scholar 

  53. Xiang, G.Y., Li, J., Yu, B., et al.: Remote preparation of mixed states via noisy entanglement[J]. Phys. Rev. A 72(1), 012315 (2005)

    Article  ADS  Google Scholar 

  54. Gao, T., Yan, F.L.: Nuovo cimento B 119 (2004) 313; T. Gao, FL Yan, and ZX Wang[J]. Chin. Phys. 14, 893 (2005)

    Article  ADS  Google Scholar 

  55. Dengm F.G., Li, C.Y., Li, Y.S., et al.: Symmetric multiparty-controlled teleportation of an arbitrary two-particle entanglement[J]. Phys. Rev. A 72(2), 022338 (2005)

  56. Rigolin, G.: Quantum teleportation of an arbitrary two-qubit state and its relation to multipartite entanglement[J]. Phys. Rev. A 71(3), 032303 (2005)

    Article  ADS  Google Scholar 

  57. Yuan, H.C., Qi, K.G.: vol. 14 (2005)

  58. Zhang, Z.J., Man, Z.X.: Phys. Lett. A 242, 55 (2005)

    Article  ADS  Google Scholar 

  59. Deng, F.G., Li, X.H., Li, C.Y., et al.: Multiparty quantum-state sharing of an arbitrary two-particle state with Einstein-Podolsky-Rosen pairs[J]. Phys. Rev. A 72(4), 044301 (2005)

    Article  ADS  Google Scholar 

  60. Zhang, Z.: Controlled teleportation of an arbitrary n-qubit quantum information using quantum secret sharing of classical message[J]. Phys. Lett. A 352(1), 55–58 (2006)

    Article  ADS  MATH  Google Scholar 

  61. Yan, F.L., Ding, H.W.: Chin. Phys. Lett. 23, 17 (2006)

    Article  ADS  Google Scholar 

  62. Yeo, Y., Chua, W.K.: Teleportation and dense coding with genuine multipartite entanglement[J]. Phys. Rev. Lett. 96(6), 060502 (2006)

    Article  ADS  Google Scholar 

  63. Deng, F.G., Li, X.H., Li, C.Y., et al.: Quantum state sharing of an arbitrary two-qubit state with two-photon entanglements and Bell-state measurements[J]. Eur. Phys. J. D Optical and Plasma Physics 39(3), 459–464 (2006)

    Article  Google Scholar 

  64. Dong, L., Xiu, X.M., Gao, Y.J.: Int. J. Mod. Phys. C 18, 1699 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  65. Cao, H.J., Song, H.S.: Teleportation of a single qubit state via Unique W State[J]. Int. J. Theor. Phys. 46(6), 1636–1642 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  66. Zhou, P., Li, X.H., Deng, F.G., et al.: Multiparty-controlled teleportation of an arbitrary m-qudit state with a pure entangled quantum channel[J]. J. Phys. A Math. Theor. 40(43), 13121 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  67. Jiang, W.X., Fang, J.X., Zhu, S.J., Sha, J.Q.: Chin. Phys. Lett. 24, 1144–1146 (2007)

    Article  ADS  Google Scholar 

  68. Da-Chuang, L., Zhuo-Liang, C.: Teleportation of two-particle entangled state via cluster state[J]. Commun. Theor. Phys. 47(3), 464 (2007)

    Article  ADS  Google Scholar 

  69. Zhan, X.G., Li, H.M., Ji, H., Zeng, H.S.: Chin. Phys. B 16, 2880–2884 (2007)

    Article  Google Scholar 

  70. Wang, Z.Y., Yuan, H., Shi, S.H., Zhang, Z.J.: Eur. Phys. J. D 41, 371–375 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  71. Gao, T., Yan, F.L., Li, Y.C.: Optimal controlled teleportation[J]. EPL (Europhysics Letters) 84(5), 50001 (2008)

    Article  ADS  Google Scholar 

  72. Wang, X.W., Yang, G.J.: Schemes for preparing atomic qubit cluster states in cavity QED[j]. Optic Communication 281(20), 5282–5285 (2008)

    Article  ADS  Google Scholar 

  73. Zha, X.W., Ren, K.F.: General relation between the transformation operator and an invariant under stochastic local operations and classical communication in quantum teleportation[J]. Phys. Rev. A 77(1) (2008)

  74. Li, X., Deng, F.: Controlled teleportation[J]. Frontiers of Computer Science in China 2(2), 147–160 (2008)

    Article  Google Scholar 

  75. Hao, Y., Yi-Min, L., Lian-Fang, H., et al.: Tripartite arbitrary two-qutrit quantum state sharing[J]. Commun. Theor. Phys. 49(5), 1191 (2008)

    Article  ADS  Google Scholar 

  76. Dong, J., Teng, J.F.: Controlled teleportation of an arbitrary n-qudit state using nonmaximally entangled GHZ states[J]. Eur. Phys. J. D 49(1), 129–134 (2008)

    Article  ADS  Google Scholar 

  77. Tao, Y.J., Tian, D.P., Hu, M.L., Qin, M.: Chin. Phys. B 17, 624–627 (2008)

    Article  ADS  Google Scholar 

  78. Xia, Y., Song, J., Song, H.S.: Quantum state sharing using linear optical elements[J]. Opt. Commun. 281(19), 4946–4950 (2008)

    Article  ADS  Google Scholar 

  79. Wang, T.J., Zhou, H.Y., Deng, F.G.: Quantum state sharing of an arbitrary m-qudit state with two-qudit entanglements and generalized Bell-state measurements[J]. Physica A: Statistical Mechanics and its Applications 387(18), 4716–4722 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  80. Sheng, Y.B., Deng, F.G., Zhou, H.Y.: Efficient and economic five-party quantum state sharing of an arbitrary m-qubit state[J]. Eur. Phys. J. D 48(2), 279–284 (2008)

    Article  ADS  Google Scholar 

  81. Romano, R., van Loock, P.: Teleportation is necessary for faithful quantum state transfer through noisy channels of maximal rank[J]. Phys. Rev. A 82(1), 012334 (2010)

    Article  ADS  Google Scholar 

  82. Zha, X.W., Song, H.Y.: Commun. Theor. Phys. 53, 852 (2010)

    Article  ADS  Google Scholar 

  83. Chen, X.B., Xu, G., Yang, Y.X., et al.: Centrally controlled quantum teleportation[J]. Opt. Commun. 283(23), 4802–4809 (2010)

    Article  ADS  Google Scholar 

  84. Chen, Q.Q., Xia, Y., Song, J., et al.: Joint remote state preparation of a W-type state via W-type states[J]. Phys. Lett. A 374(44), 4483–4487 (2010)

    Article  ADS  MATH  Google Scholar 

  85. Hou, K., Liu, G.H., Zhang, X.Y., et al.: An efficient scheme for five-party quantum state sharing of an arbitrary m-qubit state using multiqubit cluster states[J]. Quantum Inf. Process. 10(4), 463–473 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  86. Nie, Y., Li, Y., Liu, J., et al.: Quantum state sharing of an arbitrary three-qubit state by using four sets of W-class states[J]. Opt. Commun. 284(5), 1457–1460 (2011)

    Article  ADS  Google Scholar 

  87. Shi, R.H., Huang, L.S., Yang, W., et al.: Asymmetric multi-party quantum state sharing of an arbitrary m-qubit state[J]. Quantum Inf. Process 10(1), 53–61 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  88. Yang, K.Y., Xia, Y.: Joint remote preparation of a general three-qubit state via non-maximally GHZ states[J]. Int. J. Theor. Phys. 51(5), 1647–1654 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  89. Li, Y., Nie, L.: Bidirectional controlled teleportation by using a five-qubit composite GHZ-bell state[J]. Int. J. Theor. Phys. 52(5), 1630–1634 (2013)

    Article  MathSciNet  Google Scholar 

  90. Luo, M.X., Deng, Y.: Quantum splitting an arbitrary three-qubit state with -state[J]. Quantum Inf. Process 12(2), 773–784 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  91. Qi, J.X., Zha, X.W., Sun, X.M.: Testing the nonlocality of entangled states by a new Bell-like inequality[J]. Sci. China Phys. Mech. Astron. 56(11), 2236–2238 (2013)

    Article  ADS  Google Scholar 

  92. Chen, Y.: Bidirectional quantum controlled teleportation by using a genuine six-qubit entangled state[J]. Int. J. Theor. Phys. 54(1), 269–272 (2015)

    Article  MATH  Google Scholar 

  93. Sheng, Y.B., Deng, F.G., Long, G.L.: Complete hyperentangled-Bell-state analysis for quantum communication[J]. Phys. Rev. A 82(3), 032318 (2010)

    Article  ADS  Google Scholar 

  94. Wang, X.L., Cai, X.D., Su, Z.E., et al.: Quantum teleportation of multiple degrees of freedom of a single photon[J]. Nature 518(7540), 516–519 (2015)

    Article  ADS  Google Scholar 

  95. Zha, X.W., Zou, Z.C., Qi, J.X., et al.: Bidirectional quantum controlled teleportation via five-qubit cluster state[J]. Int. J. Theor. Phys. 52(6), 1740–1744 (2013)

    Article  MathSciNet  Google Scholar 

  96. Duan, Y.J., Zha, X.W., Sun, X.M., et al.: Bidirectional quantum controlled teleportation via a maximally seven-qubit entangled state[J]. Int. J. Theor. Phys. 53 (8), 2697–2707 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  97. Li, Y., Nie, L.: Bidirectional controlled teleportation by using a five-qubit composite GHZ-bell state[J]. Int. J. Theor. Phys. 52(5), 1630–1634 (2013)

    Article  MathSciNet  Google Scholar 

  98. Li, Y., Li, X., Sang, M., et al.: Bidirectional controlled quantum teleportation and secure direct communication using five-qubit entangled state[J]. Quantum Inf. Process. 12(12), 3835–3844 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  99. Shukla, C., Banerjee, A., Pathak, A.: Bidirectional controlled teleportation by using 5-qubit states: a generalized view[J]. Int. J. Theor. Phys. 52(10), 3790–3796 (2013)

    Article  MathSciNet  Google Scholar 

  100. Sun, X.M., Zha, X.W.: A scheme of bidirectional quantum controlled teleportation via six-qubit maximally entangled state[J]. Acta Photonica Sin 48, 1052–1056 (2013)

    Google Scholar 

  101. Yan, A.: Bidirectional controlled teleportation via six-qubit cluster state[J]. Int. J. Theor. Phys. 52(11), 3870–3873 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  102. Zhang, D., Zha, X.W., Duan, Y.J.: Bidirectional and asymmetric quantum controlled teleportation[J]. Int. J. Theor. Phys. 54(5), 1711–1719 (2015)

    Article  MATH  Google Scholar 

  103. Hou, S.Y., Sheng, Y.B., Feng, G.R., et al.: Experimental optimal single qubit purification in an NMR quantum information processor[J]. Sci. Rep., 4 (2014)

  104. Zhao, S.Y., Liu, J., Zhou, L., et al.: Two-step entanglement concentration for arbitrary electronic cluster state[J]. Quantum Inf. Process. 12(12), 3633–3647 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  105. Bin, S., Shi-Lei, S., Li-Li, S., et al.: Efficient three-step entanglement concentration for an arbitrary four-photon cluster state[J]. Chin. Phys. B 22(3), 030305 (2013)

    Article  Google Scholar 

  106. Lan, Z.: Consequent entanglement concentration of a less-entangled electronic cluster state with controlled-not gates[J]. Chin. Phys. B 23(5), 050308 (2014)

    Article  ADS  Google Scholar 

  107. Cao, C., Wang, T.J., Zhang, R., et al.: Cluster state entanglement generation and concentration on nitrogen-vacancy centers in decoherence-free subspace[J]. Laser Phys. Lett. 12(3), 036001 (2015)

    Article  ADS  Google Scholar 

  108. Osorio, C.I., Bruno, N., Sangouard, N., et al.: Heralded photon amplification for quantum communication[J]. Phys. Rev. A 86(2), 023815 (2012)

    Article  ADS  Google Scholar 

  109. Zhou, L., Sheng, Y.B.: Recyclable amplification protocol for the single-photon entangled state[J]. Laser Phys. Lett. 12(4), 045203 (2015)

    Article  ADS  Google Scholar 

  110. Sang, M.H.: Int. J. Theor. Phys. doi:10.1007/s10773-015-2670-7

  111. Zhang, D., Zha, X.W., Li, W., et al.: Bidirectional and asymmetric quantum controlled teleportation via maximally eight-qubit entangled state[J]. Quantum Inf. Process. 14(10), 3835–3844 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work is supported by Shaanxi Natural Science Foundation under Contract No.2013JM1009 and the Shaanxi Natural Science Foundation under Contract No.2015JM6263.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Quan Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, YQ., Zha, XW. & Yu, Y. Asymmetric Bidirectional Controlled Teleportation via Seven-qubit Cluster State. Int J Theor Phys 55, 4197–4204 (2016). https://doi.org/10.1007/s10773-016-3044-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-016-3044-5

Keywords

Navigation