Skip to main content
Log in

Relation Between Stereographic Projection and Concurrence Measure in Bipartite Pure States

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

One-qubit pure states, living on the surface of Bloch sphere, can be mapped onto the usual complex plane by using stereographic projection. In this paper, after reviewing the entanglement of two-qubit pure state, it is shown that the quaternionic stereographic projection is related to concurrence measure. This is due to the fact that every two-qubit state, in ordinary complex field, corresponds to the one-qubit state in quaternionic skew field, called quaterbit. Like the one-qubit states in complex field, the stereographic projection maps every quaterbit onto a quaternion number whose complex and quaternionic parts are related to Schmidt and concurrence terms respectively. Rather, the same relation is established for three-qubit state under octonionic stereographic projection which means that if the state is bi-separable then, quaternionic and octonionic terms vanish. Finally, we generalize recent consequences to 2⊗N and 4⊗N dimensional Hilbert spaces (N ≥ 2) and show that, after stereographic projection, the quaternionic and octonionic terms are entanglement sensitive. These trends are easily confirmed by direct computation for general multi-particle W- and GHZ-states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Nakahara, M.: Geometry, Topology and Physics. Institute of Physics Publishing, Philadelphia (1990)

    Book  MATH  Google Scholar 

  2. Duf, M.J.: Phys. Rev. D 76, 025017 (2007). arXiv:hep-th/0601134

    Article  ADS  MathSciNet  Google Scholar 

  3. Levay, P.: Phys. Rev. D 74, 024030 (2006). arXiv:hep-th/0603136

    Article  ADS  MathSciNet  Google Scholar 

  4. Rios, M.: Extremal Black Holes as Qudits (2012). arXiv:1102.1193v2

    Google Scholar 

  5. Rañada, A.F.: A topological theory of the electromagnetic field. Lett. Math. Phys. 18, 97–106 (1989)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. życzkowski, K.: Geometry of Quantum States An Introduction to Quantum Entanglement. Cambridge University Press, New York (2006)

    MATH  Google Scholar 

  7. Mosseri, R., Dandoloff, R.: J. Phys. A: Math. Gen. 34, 10243 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  8. Najarbashi, G., Ahadpour, S., Fasihi, M.A., Tavakoli, Y.: J. Phys. A: Math. Theor. 40, 6481–6489 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  9. Najarbashi, G., Seifi, B., Mirzaei, S.: Quantum Inf. Process 15, 509–528 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  10. Najarbashi, G., Seifi, B.: Quantum phase transition in the Dzyaloshinskii-Moriya interaction with inhomogeneous magnetic field: Geometric approach. arXiv:1512.04029 (2015)

  11. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  12. życzkowski, K., Horodecki, P., Sanpera, A., Lewenstein, M.: Phys. Rev. A 58, 833 (1998)

    Google Scholar 

  13. Chruscinski, D., Kossakowski, A.: Phys. Lett. A 373, 2301–2305 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  14. Schirmer, S.G., Zhang, T., Leahy, J.V.: J. Phys. A: Math. Gen. 37, 1389–1402 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  15. Lévay, P.: J. Phys. A: Math. Gen. 37, 1821–1841 (2004)

    Article  ADS  Google Scholar 

  16. Lévay, P.: J. Phys. A: Math. Gen. 39, 9533–9545 (2006)

    Article  ADS  Google Scholar 

  17. Lévay, P.: Phys. Rev. A 71, 012334 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  18. Mäkelä, H., Messina, A.: Phys. Scr. 014054 (2010)

  19. Ali, M., Rau, A.R.P., Alber, G.: Phys. Rev. A 82, 069902 (2010)

    Article  ADS  Google Scholar 

  20. Rau, A.R.P.: J. Phys. A: Math. Theor. 42, 412002 (2009)

    Article  MathSciNet  Google Scholar 

  21. Fiscaletti, D., Licata, I.: Int. J. Theor. Phys. 54, 2362 (2015)

    Article  MathSciNet  Google Scholar 

  22. Bernevig, B.A., Chen, H.D.: J. Phys. A: Math. Gen. 36, 8325 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  23. Lee, J.W., Kim, C.H., Lee, E.K., Kim, J., Lee, S.: Quantum Inf. Process 1, 129–134 (2002)

    Article  MathSciNet  Google Scholar 

  24. Akhtarshenas, S.J.: J. Phys. A: Math. Gen. 38, 6777–6784 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  25. Bennett, C.H., Divincenzo, D.P., Smolin, J.A., Wotter, W.K.: Phys. Rev. A 54, 3824–3851 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  26. Wootters, W.K.: Phys. Rev. Lett. 80, 2245–2248 (1998)

    Article  ADS  Google Scholar 

  27. Hill, S., Wootters, W.K.: Phys. Rev. Lett. 78, 5022–5025 (1997)

    Article  ADS  Google Scholar 

  28. Li, Y.Q., Zhu, G.Q.: Front. Phys. China 3, 250257 (2008)

    Google Scholar 

  29. Liu, J., Zhou, L., Sheng, Y.B.: Chin. Phys. B 24, 070309 (2015)

    Article  ADS  Google Scholar 

  30. Zhou, L., Sheng, Y.B.: Phys. Rev. A 90, 024301 (2014)

    Article  ADS  Google Scholar 

  31. Sheng, Y.B., Guo, R., Pan, J., Zhou, L., Wang, X.F.: Quantum Inf. Process 14, 963–978 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  32. Borsten, L., Dahanayake, D., Duff, M.J., Ebrahim, H., Rubens, W.: Phys. Rep. 471, 113–219 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  33. Bekenstein, J.D.: Phys. Rev. D 7(8), 2333–2346 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  34. Hawking, S.W.: Commun. Math. Phys. 43, 199–220 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  35. Miyake, A., Wadati, M.: Quant. Info. Comp. 2(Special), 540–555 (2002). arXiv:quant-ph/0.212146

    MathSciNet  Google Scholar 

  36. Borsten, L., Duff, M.J., Marrani, A., Rubens, W.: Eur. Phys. J. Plus 126, 37 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

The authors also acknowledge the support from the Mohaghegh Ardabili University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Najarbashi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Najarbashi, G., Seifi, B. Relation Between Stereographic Projection and Concurrence Measure in Bipartite Pure States. Int J Theor Phys 55, 4480–4491 (2016). https://doi.org/10.1007/s10773-016-3071-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-016-3071-2

Keywords

Navigation