Skip to main content
Log in

Controlled Remote State Preparation of an Arbitrary Two-Qubit State by Using GHZ States

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In this paper, we demonstrate that two Greenberger-Horne-Zeilinger (GHZ) states can be used to realize the perfect and deterministic controlled remote state preparation of an arbitrary two-qubit state by performing only the two-qubit projective measurements and appropriate unitary operations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lo, H.-K.: Classical-communication cost in distributed quantum-information processing: a generalization of quantum communication complexity. Phys. Rev. A 62 (1), 012313 (2000)

    Article  ADS  Google Scholar 

  2. Li, Y.H., Li, X.L., Nie, L.P., Sang, M.H.: Quantum teleportation of three and four-qubit state using multi-qubit cluster states. Int. J. Theor. Phys. 55(3), 1820–1823 (2016)

    Article  MATH  Google Scholar 

  3. Li, Y.H., Jin, X.M.: Bidirectional controlled teleportation by using nine-qubit entangled state in noisy environments. Quantum Inf. Process. 15(2), 929–945 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Wang, D., Hu, Y.-D., Wang, Z.-Q., Ye, L.: Efficient and faithful remote preparation of arbitrary three-and four-particle W-class entangled states. Quantum Inf. Process. 14(6), 2135–2151 (2015)

    Article  ADS  MATH  Google Scholar 

  5. Li, D.-F., Wang, R.-J., Zhang, F.-L., Deng, F.-H., Baagyere, E.: Quantum information splitting of arbitrary two-qubit state by using four-qubit cluster state and Bell-state. Quantum Inf. Process. 14(3), 1103–1116 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Wang, M.-M., Wang, W., Chen, J.-G., Farouk, A.: Secret sharing of a known arbitrary quantum state with noisy environment. Quantum Inf. Process. 14(11), 4211–4224 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Luo, M.-X., Ma, S.-Y., Deng, Y., Wang, X.-J.: Deterministic generations of quantum state with no more than six qubits. Quantum Inf. Process. 14(3), 901–920 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Li, K., Kong, F.-Z., Yang, M., Ozaydin, F., Yang, Q., Cao, Z.-L.: Generating multi-photon W-like states for perfect quantum teleportation and superdense coding. Quantum Inf. Process. 15(8), 3137–3150 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Wang, M.-Y., Yan, F.-L.: Quantum teleportation of a generic two-photon state with weak cross-Kerr nonlinearities. Quantum Inf. Process. 15(8), 3383–3392 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Dong, L., Wang, J.-X., Li, Q.-Y., Dong, H.-K., Xiu, X.-M., Gao, Y.-J.: Teleportation of a general two-photon state employing a polarization-entangled χ state with nondemolition parity analyses. Quantum Inf. Process. 15(7), 2955–2970 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Hassanpour, S., Houshmand, M.: Bidirectional teleportation of a pure EPR state by using GHZ states. Quantum Inf. Process. 15(2), 905–912 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Jeong, H., Bae, S., Choi, S.: Quantum teleportation between a single-rail single-photon qubit and a coherent-state qubit using hybrid entanglement under decoherence effects. Quantum Inf. Process. 15(2), 913–927 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Thapliyal, K., Pathak, A.: Applications of quantum cryptographic switch: various tasks related to controlled quantum communication can be performed using Bell states and permutation of particles. Quantum Inf. Process. 14(7), 2599–2616 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. He, X.-L., Liu, M., Yang, C.-P.: Controlled teleportation with the control of two groups of agents via entanglement. Quantum Inf. Process. 14(3), 1055–1068 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Hu, J.-R., Lin, Q.: W state generation by adding independent single photons. Quantum Inf. Process. 14(8), 2847–2860 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Hou, K., Yu, J.-Y., Yan, F.: Deterministic remote preparation of a four-particle entangled W state. Int. J. Theor. Phys. 54(9), 3092–3102 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Li, X.-H., Ghose, S.: Optimal joint remote state preparation of equatorial states. Quantum Inf. Process. 14(12), 4585–4592 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Wang, C., Zeng, Z., Li, X.-H.: Controlled remote state preparation via partially entangled quantum channel. Quantum Inf. Process. 14(3), 1077–1089 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Zhang, D., Zha, X.-W., Duan, Y.-J., Yang, Y.-Q.: Deterministic controlled bidirectional remote state preparation via a six-qubit entangled state. Quantum. Inf. Process. 15(5), 2169–2179 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Bich, C.-T.: Controlled simultaneously state preparation at many remote locations with a new cluster state type. Int. J. Theor. Phys. 54(1), 139–152 (2015)

    Article  MATH  Google Scholar 

  21. Abeyesinghe, A., Hayden, P.: Generalized remote state preparation: Trading cbits, qubits, and ebits in quantum communication. Phys. Rev. A 68(6), 062319 (2003)

    Article  ADS  Google Scholar 

  22. Leung, D.-W., Shor, P.-W.: Oblivious remote state preparation. Phys. Rev. Lett. 90(12), 127905 (2003)

    Article  ADS  Google Scholar 

  23. Ye, M.-Y., Zhang, Y.-S., Guo, G.-C.: Faithful remote state preparation using finite classical bits and a nonmaximally entangled state. Phys. Rev. A 69(2), 022310 (2004)

    Article  ADS  Google Scholar 

  24. Sharma, V., Shukla, C., Banerjee, S., Pathak, A.: Controlled bidirectional remote state preparation in noisy environment: a generalized view. Quantum Inf. Process. 14(9), 3441–3464 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Hua, C.-Y., Chen, Y.-X.: A scheme for remote state preparation of a general pure qubit with optimized classical communication cost. Quantum Inf. Process. 14(3), 1069–1076 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Liang, H.-Q., Liu, J, -M., Feng, S.-S., Chen, J.-G., Xu, X.-Y.: Effects of noises on joint remote state preparation via a GHZ-class channel. Quantum Inf. Process. 14(10), 3857–3877 (2015)

  27. Thapliyal, K., Verma, A., Pathak, A.: A general method for selecting quantum channel for bidirectional controlled state teleportation and other schemes of controlled quantum communication. Quantum Inf. Process. 14(12), 4601–4614 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Wu, W., Liu, W.-T., Chen, P.-X., Li, C.-Z.: Deterministic remote preparation of pure and mixed polarization states. Phys. Rev. A 81(4), 042301 (2010)

    Article  ADS  Google Scholar 

  29. Barreiro, J.-T., Wei, T.-C., Kwiat. P.-G.: Remote preparation of single-photon “hybrid” entangled and vector-polarization states. Phys. Rev. Lett. 105(3), 030407 (2010)

    Article  ADS  Google Scholar 

  30. Radmark, M., Wiesniak, M., Zukowski, M., Bourennane, M.: Experimental multilocation remote state preparation. Phys. Rev. A 88(3), 032304 (2013)

    Article  ADS  Google Scholar 

  31. An, N.-B., Kim, J.: Joint remote state preparation. J. Phys. B At. Mol. Opt. Phys. 41(9), 095501 (2008)

    Article  ADS  Google Scholar 

  32. Choudhury, B.-S., Dhara, A.: Joint remote state preparation for two-qubit equatorial states. Quantum Inf. Process. 14(1), 373–379 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work is supported by Research on the teaching reform of higher education in Jiangxi Province, China (Grant No. JXJG-15-24-8), and the achievements of domestic visiting scholars of young teachers in higher education of Jiangxi Province (Visiting school is Huazhong Normal University)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, L., Zhao, Hx. Controlled Remote State Preparation of an Arbitrary Two-Qubit State by Using GHZ States. Int J Theor Phys 56, 678–682 (2017). https://doi.org/10.1007/s10773-016-3209-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-016-3209-2

Keywords

Navigation