Skip to main content
Log in

Multi-party Quantum Key Agreement without Entanglement

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

A new efficient quantum key agreement protocol without entanglement is proposed. In this protocol, each user encodes his secret key into the traveling particles by performing one of four rotation operations that one cannot perfectly distinguish. In the end, all users can simultaneously obtain the final shared key. The security of the presented protocol against some common attacks is discussed. It is shown that this protocol can effectively protect the privacy of each user and satisfy the requirement of fairness in theory. Moreover, the quantum carriers and the encoding operations used in the protocol can be achieved in realistic physical devices. Therefore, the presented protocol is feasible with current technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: public-key distribution and coin tossing. Proceedings of IEEE International Conference on Computers, Systems and Signal, pp 175–179, Bangalore (1984)

  2. Deng, F.G., Long, G.L.: Bidirectional quantum key distribution protocol with practical faint laser pulses. Phys. Rev. A 70, 012311 (2004)

    Article  ADS  Google Scholar 

  3. Gao, F., Guo, F.Z., Wen, Q.Y., Zhu, F.C.: On the information-splitting essence of two types of quantum key distribution protocols. Phys. Lett. A 355, 172–175 (2006)

    Article  ADS  MATH  Google Scholar 

  4. Huang, W., Guo, F.Z., Huang, Z., Wen, Q.Y., Zhu, F.C.: Three-particle QKD protocol against a collective noise. Opt. Commun. 284(1), 536–540 (2011)

    Article  ADS  Google Scholar 

  5. Salas, P.J.: Security of plug-and-play QKD arrangements with finite resources. Quantum Inf. Comput. 13(9-10), 861–879 (2013)

    Google Scholar 

  6. Cleve, R., Gottesman, D., Lo, H.K.: How to share a quantum secret. Phys. Rev. Lett. 83, 648–651 (1999)

    Article  ADS  Google Scholar 

  7. Hillery, M., Buzek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829–1834 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  8. Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59, 162–168 (1999)

    Article  ADS  Google Scholar 

  9. Xiao, L., Long, G.L., Deng, F.G., Pan, J.W.: Efficient multiparty quantum secret sharing schemes. Phys. Rev. A 69, 052307 (2004)

    Article  ADS  Google Scholar 

  10. Massoud, H.D., Elham, F.: A novel and efficient multiparty quantum secret sharing scheme using entangled states. Sci. China Phys. Mech. Astron. 55, 1828–1831 (2012)

    Article  ADS  Google Scholar 

  11. Yang, Y.G., Cao, W.F., Wen, Q.Y.: Secure quantum private comparison. Phsy. Scr. 80, 065002 (2009)

    Article  ADS  MATH  Google Scholar 

  12. Yang, Y.G., Wen, Q.Y.: An efficient two-party quantum private comparison protocol with decoy photons and two-photon entanglement. J. Phys. A Math. Theor. 42, 055305 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Liu, W., Wang, Y.B., Jiang, Z.T.: An efficient protocol for the quantum private comparison of equality with W state. Opt. Commun. 284, 3160–3163 (2011)

    Article  ADS  Google Scholar 

  14. Zeng, G.H., Keitel, C.H.: Arbitrated quantum-signature scheme. Phys. Rev. A 65, 042312 (2002)

    Article  ADS  Google Scholar 

  15. Li, Q., Chan, W.H., Long, D.Y.: Arbitrated quantum signature scheme using Bell states. Phys. Rev. A 79, 054307 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  16. Gao, F., Qin, S.J., Guo, F.Z., Wen, Q.Y.: Cryptanalysis of the arbitrated quantum signature protocols. Phys. Rev. A 84, 022344 (2011)

    Article  ADS  Google Scholar 

  17. Dunjko, V., Wallden, P., Andersson, E.: Quantum digital signatures without quantum memory. Phys. Rev. Lett. 112, 040502 (2014)

    Article  ADS  MATH  Google Scholar 

  18. Zhou, N., Zeng, G., Xiong, J.: Quantum key agreement protocol. Electron. Lett. 40, 1149–1150 (2004)

    Article  Google Scholar 

  19. Chong, S.K., Tsai, C.W., Hwang, T.: Improvement on “Quantum Key Agreement Protocol with Maximally Entangled State”. Int. J. Theor. Phys. 50, 1793–1802 (2011)

    Article  MATH  Google Scholar 

  20. Chong, S.K., Hwang, T.: Quantum key agreement protocol based on BB84. Opt. Commun. 283, 1192–1195 (2010)

    Article  ADS  Google Scholar 

  21. Shi, R.H., Zhong, H.: Multi-party quantum key agreement with bell states and bell measurements. Quantum Inf. Process 12, 921–932 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Liu, B., Gao, F., Huang, W., Wen, Q.Y.: Multiparty quantum key agreement with single particles. Quantum Inf. Process 12, 1797–1805 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Sun, Z.W., Zhang, C., Wang, B.H., Li, Q., Long, D.Y.: Improvements on “Multiparty quantum key agreement with single particles”. Quantum Inf. Process 12, 3411–3420 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Huang, W., Wen, Q.Y., Liu, B., Su, Q., Gao, F.: Cryptanalysis of a multi-party quantum key agreement protocol with single particles. Quantum Inf. Process 13, 1651–1657 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  25. Yin, X.R., Ma, W.P., Liu, W.Y.: Three-party quantum key agreement with two-photon entanglement. Int. J. Theor. Phys 52, 3915–3921 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Huang, W., Wen, Q.Y., Liu, B., Gao, F., Sun, Y.: Quantum key agreement with EPR pairs and single-particle measurements. Quantum Inf. Process 13, 649–663 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Huang, W., Su, Q., Wu, X., Li, Y.B., Sun, Y.: Quantum key agreement against collective decoherence. Int. J. Theor. Phys. 53, 2891–2901 (2014)

    Article  MATH  Google Scholar 

  28. Shen, D.S., Ma, W.P., Wang, L.L.: Two-party quantum key agreement with four-qubit cluster states. Quantum Inf. Process 13, 2313–2324 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Shukla, C., Alam, N., Pathak, A.: Protocols of quantum key agreement solely using Bell states and Bell measurement. Quantum Inf. Process 13, 2391–2405 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  30. Xu, G.B., Wen, Q.Y., Gao, F., Qin, S.J.: Novel multiparty quantum key agreement protocol with GHZ states. Quantum Inf. Process 13, 2587–2594 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Zhu, Z.C., Hu, A.Q., Fu, A.M.: Participant attack on three-party quantum key agreement with two-photon entanglement. Int. J. Theor. Phys. 55(1), 55–61 (2016)

    Article  MATH  Google Scholar 

  32. He, Y.F., Ma, W.P.: Quantum key agreement protocols with four-qubit cluster states. Quantum Inf. Process 14, 3483–3498 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Sun, Z.W., Yu, J.P., Wang, P.: Efficient multi-party quantum key agreement by cluster states. Quantum Inf. Process 15, 373–384 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. He, Y.F., Ma, W.P.: Two-party quantum key agreement based on four-particle GHZ states. Int. J. Theor. Phys. 14, 1650007 (2016)

    MathSciNet  MATH  Google Scholar 

  35. Sun, Z.W., Zhang, C., Wang, P., Yu, J.P., Zhang, Y., Long, D.Y.: Multi-party quantum key agreement by an entangled six-qubit state. Int. J. Theor. Phys. 55, 1920–1929 (2016)

    Article  MATH  Google Scholar 

  36. Liu, B., Xiao, D., Jia, H.Y., Liu, R.Z.: Collusive attacks to “circle-type” multi-party quantum key agreement protocols. Quantum Inf. Process 15, 2113–2124 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Fu, Z.J., Wu, X.L., Guan, C.W., Sun, X.M., Kui, R.: Toward efficient multi-keyword fuzzy search over encrypted outsourced data with accuracy improvement. IEEE T. Inf. Foren. Sec., 11, 2706–2716 (2016)

    Article  Google Scholar 

  38. Ren, Y.J., Shen, J., Wang, J., Han, J., Lee, S.: Mutual verifiable provable data auditing in public cloud storage. J. Internet. Technol. 16, 317 (2015)

    Google Scholar 

  39. Acín, A.: Statistical distinguishability between unitary operations. Phys. Rev. Lett. 87, 177901 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  40. D’Ariano, G.M., Presti, P.L., Paris, M.G.A.: Improved discrimination of unitary transformations by entangled probes. J. Opt. B: Quantum Semiclass. Opt. 4, 273 (2002)

    Article  Google Scholar 

  41. Helstrom, C.W.: Quantum detection and estimation theory. Academic press (1976)

  42. Huang, W., Wen, Q.Y., Liu, B., Su, Q., Qin, S.J., Gao, F.: Quantum anonymous ranking. Phys. Rev. A 89, 032325 (2014)

    Article  ADS  Google Scholar 

  43. Damgard, I.B.: A design principle for hash functions. Adv. Cryptol.-CRYPTO’89 Proc. 435, 416–427 (1990)

    Article  MathSciNet  Google Scholar 

  44. Boyer, M., Kenigsberg, D., Mor, T.: Quantum key distribution with classical Bob. Phys. Rev. Lett. 99, 140501 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. Jennewein, T., Simon, C., Weihs, G., Weinfurter, H., Zeilinger, A.: Quantum cryptography with entangled photons. Phys. Rev. Lett. 84, 4729–4732 (2000)

    Article  ADS  Google Scholar 

  46. Stucki, D., Gisin, N., Guinnard, O., Ribordy, G., Zbinden, H.: Quantum key distribution over 67 km with a plug and play system. New J. Phys. 4, 41.1-41.8 (2002)

    Article  Google Scholar 

  47. Hughes, R.J., Nordholt, J.E., Derkacs, D., Peterson, C.G.: Practical free-space quantum key distribution over 10 km in daylight and at night. New. J. Phys. 4, 43.1-43.14 (2002)

    Article  Google Scholar 

  48. Beveratos, A., Brouri, R., Gacoin, T., Villing, A., Poizat, J.P., Grangier, P.: Single photon quantum cryptography. Phys. Rev. Lett. 89, 187901 (2002)

    Article  ADS  Google Scholar 

  49. Gobby, C., Yuan, Z.L., Shields, A.J.: Quantum key distribution over 122 km of standard telecom fiber. Appl. Phys. Lett. 84, 3762–3764 (2004)

    Article  ADS  Google Scholar 

  50. Cabello, A.: Quantum key distribution in the Holevo limit. Phys. Rev. Lett. 85, 5635–5638 (2000)

    Article  ADS  Google Scholar 

  51. Deng, F.G., Li, X.H., Zhou, H.Y., Zhang, Z.: Improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys. Rev. A 72, 044302 (2005)

    Article  ADS  Google Scholar 

  52. Li, X.H., Deng, F.G., Zhou, H.Y.: Improving the security of secure direct communication based on the secret transmitting order of particles. Phys. Rev. A 74, 054302 (2006)

    Article  ADS  Google Scholar 

  53. Cai, Q.Y.: Eavesdropping on the two-way quantum communication protocols with invisible photons. Phys. Lett. A 351, 23–25 (2006)

    Article  ADS  MATH  Google Scholar 

  54. Lin, J., Hwang, T.: New circular quantum secret sharing for remote agents. Quantum Inf. Process 12, 685 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. Liu, W.T., Liang, L.M., Li, C.Z., Yuan, J.M.: Scalable quantum secret sharing extended from quantum key distribution. Chin. Phys. Lett. 24, 1147 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (Grant No. 61202451), Foundation of Fujian Education Bureau (Grant Nos. JA12062, JA15131), Program for Innovative Research Team in Science and Technology in Fujian Province University, and a Key Project of Fujian Provincial Universities-Information Technology Research Based on Mathematics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Song Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, BB., Guo, GD. & Lin, S. Multi-party Quantum Key Agreement without Entanglement. Int J Theor Phys 56, 1039–1051 (2017). https://doi.org/10.1007/s10773-016-3246-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-016-3246-x

Keywords

Navigation