Skip to main content
Log in

Reversible Flip-Flops in Quantum-Dot Cellular Automata

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

A Correction to this article was published on 23 October 2017

This article has been updated

Abstract

Quantum-dot cellular automata is a new technology to design the efficient combinational and sequential circuits at the nano-scale. This technology has many desirable advantages compared to the CMOS technology such as low power consumption, less occupation area and low latency. These features make it suitable for use in flip-flop design. In this paper, with knowing the characteristics of reversible logic, we design new structures for flip-flops. The operations of these structures are evaluated with QCADesigner Version 2.0.3 simulator. In addition, we calculate the power dissipation of these structures by QCAPro tool. The results illustrated that proposed structures are efficient compared to the previous ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Change history

  • 23 October 2017

    The authors want to add two references in the original version of this article.

References

  1. Goyal, D., Sharma, V.: VHDL implementation of reversible logic gate. Int. J. Adv. Technol. Eng. Res. (IJATER), 2(3) (2012). ISSN NO: 2250-3536

  2. Compano, R., Molenkamp, L., Paul, D.J.: Technology Roadmap for Nanoelec-Tronics Proceedings of the European Commission IST Programme, Future Emerging Technology (1999)

    Google Scholar 

  3. Tougaw, P.D., Lent, C.S.: Logical devices implemented using quantum cellular automata. Appl. Phys. 75, 1818–1824 (1994)

    Article  Google Scholar 

  4. Kianpour, M., Sabbaghi-Nadooshan, R.: A conventional design and sim500 ulation for CLB implementation of an FPGA quantum-dot cellular automata. Microprocess. Microsyst. 38, 1046–1062 (2014)

    Article  Google Scholar 

  5. Hashemi, S., Navi, K.: Reversible multiplexer design in quantum-dot cellular automata. Quantum Matter 3, 523–528 (2014)

    Article  Google Scholar 

  6. Cho, H., Swartzlander, E.: Adder and multiplier design in quantum-dot cellular automata. IEEE Trans. Nanotechnol. 58(6), 721–727 (2009)

    MATH  MathSciNet  Google Scholar 

  7. Ali, B., Hossin, M., Ullah, E.: Design of reversible sequential circuit using reversible logic synthesis. International Journal of VLSI Design &, Communication Systems (VLSICS) vol. 2, no. 4 (2011)

  8. Saravanan, P., Kalpana, P.: A novel and systematic approach to implement reversible gates in quantum dot cellular automata. WSEAS Trans. Circuits Syst. 12, 307–316 (2013)

    Google Scholar 

  9. Thapliyal, H., Ranganathan, N.: Reversible logic-based concurrently testable latches for molecular QCA. IEEE Trans. Nanotechnol. 9, 62–69 (2010)

    Article  ADS  Google Scholar 

  10. Moustafa, A., Younes, A., Hassan, Y.F.: A customizable quantum-dot cellular automata building block for the synthesis of classical and reversible circuits. Sci. World J. doi:10.1155/2015/705056 (2015)

  11. Navi, K., Sayedsalehi, S., Farazkish, R., Rahimi Azghadi, M.: Five-input majority gate, a new device for quantum-dot cellular automata. J. Comput. Theor. Nanosci. 7, 1546–1553 (2010)

    Article  Google Scholar 

  12. Navi, K., Farazkish, R., Sayedsalehi, S., Rahimi Azghadi, M.: A new quantum-dot cellular automata full-adder. Microelectron. J. 41, 820–826 (2010). (Elsevier)

    Article  Google Scholar 

  13. Mukhopadhyay, D., Dutta, P.: A study on energy optimized 4 dot 2 electron two dimensional quantum dot cellular automata logical reversible flip-flops. J. 46, 519–530 (2015). (Elsevier)

    Google Scholar 

  14. Blair, E.P., Liu, M., Lent, C.S.: Signal energy in quantum-dot cellular automata bit packets. J. Comput. Theor. Nanosci. 8, 972–983 (2011)

    Article  Google Scholar 

  15. Timler, J., Lent, C.S.: Power gain and dissipation in quantum-dot cellular automata. J. Appl. Phys. 91, 823–831 (2002)

    Article  ADS  Google Scholar 

  16. Himanshu, T., Srinivas, M.B.: A beginning in the reversible logic synthesis of sequential circuits having features of online testability, SPIE Microelectronics, MEMS, and Nanotechnology Symposium, Brisbane, Australia (2005)

  17. Ali, B., Hossin, M., Ullah, E.: Design of reversible sequential circuit using reversible logic synthesis. International Journal of VLSI design and Communication Systems (VLSICS) vol. 2, no. 4 (2011)

  18. Walus, K., Dysart, T.J., Jullien, G.A., Budiman, R.A.: QCADEsigner: a rapid design and simulation tool for quantum-dot cellular automata. IEEE Trans. Nanotechnol. 3(1) (2004)

  19. Srivastava, S., Asthana, A., Bhanja, S., Sarkar, S.: QCAPro-An Error Power Estimation Tool for QCA Circuit Design Proceedings of the IEEE International Symposium Circuits System, pp 2377–2380 (2011)

    Google Scholar 

  20. Heikalabad, S.R., Navin, A.H., Hosseinzadeh, M.: Midpoint memory: a special memory structure for Data-Oriented models implementation. J. Circuits, Syst. Comput. 24(5) (2015)

  21. Heikalabad, S.R., Navin, A.H., Hosseinzadeh, M.: Content addressable memory cell in quantum-dot cellular automata. Microelectron. Eng. 163, 140–150 (2016)

    Article  Google Scholar 

  22. Karkaj, E.T., Heikalabad, S.R.: Binary to gray and gray to binary converter in quantum-dot cellular automata. Optik - International Journal for Light and Electron Optics, vol. 130. doi:10.1016/j.ijleo.2016.11.087 (2017)

  23. Karkaj, E.T., Heikalabad, S.R.: A testable parity conservative gate in quantum-dot cellular automata. Superlattices Microstruct. doi:10.1016/j.spmi.2016.08.054 (2017)

  24. Asfestani, M.N., Heikalabad, S.R.: A unique structure for the multiplexer in quantum-dot cellular automata to create a revolution in design of nanostructures. Phys. B Condens. Matter 512, 91–99 (2017). doi:10.1016/j.physb.2017.02.028

    Article  ADS  Google Scholar 

  25. Barughi, Y.Z., Heikalabad, S.R.: A Three-Layer Full Adder/Subtractor Structure in Quantum-Dot Cellular Automata. Int. J. Theor. Phys. doi:10.1007/s10773-017-3453-0 (2017)

  26. Asfestani, M.N., Heikalabad, S.R.: A novel multiplexer-based structure for random access memory cell in quantum-dot cellular automata. Phys. B Condens. Matter 521, 162–167 (2017). doi:10.1016/j.physb.2017.06.059

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Rasouli Heikalabad.

Additional information

A correction to this article is available online at https://doi.org/10.1007/s10773-017-3575-4.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rad, S.K., Heikalabad, S.R. Reversible Flip-Flops in Quantum-Dot Cellular Automata. Int J Theor Phys 56, 2990–3004 (2017). https://doi.org/10.1007/s10773-017-3466-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-017-3466-8

Keywords

Navigation