Skip to main content
Log in

Simultaneous Teleportation of Arbitrary Two-qubit and Two Arbitrary Single-qubit States Using A Single Quantum Resource

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In this paper we present a teleportation protocol by which the multitask of transfer of a two-qubit and two single-qubit quantum states is performed simultaneously with the help of a single entangled channel. The protocol is under the supervision of a controller. There are three pairs of senders and receivers who are connected among themselves along with the controller by a single entangled state. The teleportation protocol is perfect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Zhang, Z.J., Man, Z.X.: Many-agent controlled teleportation of multi-qubit quantum information. Phys. Lett. A 341(1), 55–59 (2005)

    Article  ADS  MATH  Google Scholar 

  3. Zhang, Z.J.: Controlled teleportation of an arbitrary n-qubit quantum information using quantum secret sharing of classical message. Phys. Lett. A 352(1), 55–58 (2006)

    Article  ADS  MATH  Google Scholar 

  4. Gao, T., Yan, F.L., Wang, Z.X.: Controlled quantum teleportation and secure direct communication. Chin. Phys. 14(5), 893–897 (2005)

    Article  ADS  Google Scholar 

  5. Agrawal, P., Pati, A.K.: Probabilistic quantum teleportation. Phys. Lett. A 305, 12–17 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Yan, F., Yan, T.: Probabilistic teleportation via a non-maximally entangled GHZ state. Chin. Sci. Bull. 55, 902–906 (2010)

    Article  Google Scholar 

  7. Huelga, S.F., Plenio, M.B., Vaccaro, J.A.: Remote control of restricted sets of operations: teleportation of angles. Phys. Rev. A 65, 042316 (2002)

    Article  ADS  Google Scholar 

  8. Shukla, C., Banerjee, A., Pathak, A.: Bidirectional controlled teleportation by Using 5-Qubit States: A Generalized View. Int. J. Theor. Phys. 52, 3790–3796 (2013)

    Article  Google Scholar 

  9. Vaidman, L.: Teleportation of quantum states. Phys. Rev. A 49, 1473–1476 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  10. Kim, Y.H., Kulik, S.P., Shih, Y.: Quantum teleportation of a polarization state with a complete Bell state measurement. Phys. Rev. Lett. 86, 1370 (2001)

    Article  ADS  Google Scholar 

  11. Barrett, M.D., Chiaverini, J., Schaetz, T., Britton, J., Itano, W.M., Jost, J.D., Knill, E., Langer, C., Leibfried, D., Ozeri, R., Wineland, D.J.: Deterministic quantum teleportation of atomic qubits. Nature 429, 737–739 (2004)

    Article  ADS  MATH  Google Scholar 

  12. Zheng, S.B.: Scheme for approximate conditional teleportation of an unknown atomic state without the Bell state measurement. Phys. Rev. A 69, 064302 (2004)

    Article  ADS  Google Scholar 

  13. Yan, F.L., Zhang, X.Q.: A scheme for secure direct communication using EPR pairs and teleportation. Euro. Phys. J. B 41, 75–78 (2004)

    Article  ADS  Google Scholar 

  14. Rigolin, G.: Quantum teleportation of an arbitrary two-qubit state and its relation to multipartite entanglement. Phys. Rev. A 71, 032303 (2005)

    Article  ADS  Google Scholar 

  15. Cardoso, W.B., Avelar, A.T., Baseia, B., de Almeida, N.G.: Teleportation of entangled states without Bell state measurement. Phys. Rev. A 72, 045802 (2005)

    Article  ADS  Google Scholar 

  16. Leuenberger, M.N., Flatte, M.E., Awschalom, D.D.: Teleportation of electronic many-qubit states encoded in the electron spin of quantum dots via single photons. Phys. Rev. Lett. 94, 107401 (2005)

    Article  ADS  Google Scholar 

  17. Cao, H.J., Song, H.S.: Quantum secure direct communication scheme using a W state and teleportation. Phys. Scr. 74(5), 572 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Olmschenk, S., Matsukevich, D.N., Maunz, P., Hayes, D., Duan, L.M., Monroe, C.: Quantum teleportation between distant matter qubits. Science 323, 486–489 (2009)

    Article  ADS  Google Scholar 

  19. Yang, K., Huang, L., Yang, W., Song, F.: Quantum teleportation via GHZ-like state. Int. J. Theor. Phys. 48, 516–521 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Tsai, C.W., Hwang, T.: Teleportation of a pure EPR state via GHZ-like state. Int. J. Theor. Phys. 49, 1969–1975 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Sheng, Y.B., Deng, F.G., Long, G.L.: Complete hyperentangled-Bell-state analysis for quantum communication. Phys. Rev. A 82, 032318 (2010)

    Article  ADS  Google Scholar 

  22. Zhang, Q.N., Li, C.C., Li, Y.H., Nie, Y.Y.: Quantum secure direct communication based on four-qubit cluster states. Int. J. Theor. Phys. 52, 22–27 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Shao, Q.: Quantum teleportation of the two-qubit entangled state by use of four-qubit entangled state. Int. J. Theor. Phys. 52, 2573–2577 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Nandi, K., Mazumdar, C.: Quantum teleportation of a two-qubit state using GHZ-like state. Int. J. Theor. Phys. 53, 1322–1324 (2014)

    Article  MATH  Google Scholar 

  25. Zhu, H.P.: Perfect teleportation of an arbitrary two-qubit state via GHZ-like states. Int. J. Theor. Phys. 53, 4095–4097 (2014)

    Article  MATH  Google Scholar 

  26. Sheng, Y.B., Zhou, L.: Entanglement analysis for macroscopic Schrdinger’s Cat state. EPL 109, 40009 (2015)

    Article  ADS  Google Scholar 

  27. Sheng, Y.B., Zhou, L.: Two-step complete polarization logic Bell-state analysis. Sci. Rep. 5, 13453 (2015)

    Article  ADS  Google Scholar 

  28. Zhou, L., Sheng, Y.B.: Complete logic Bell-state analysis assisted with photonic Faraday rotation. Phys. Rev. A 92, 042314 (2015)

    Article  ADS  Google Scholar 

  29. Li, T.C., Yin, Z.Q.: Quantum superposition, entanglement, and state teleportation of a microorganism on an electromechanical oscillator. Sci. Bull. 61, 163–171 (2016)

    Article  Google Scholar 

  30. Zhan, H.T., Yu, X.T., Xiong, P.Y., Zhang, Z.C.: Multi-hop teleportation based on W state and EPR pairs. Chin. Phys. B 25, 050305 (2016)

    Article  Google Scholar 

  31. Zhao, M.J., Chen, B., Fei, S.M.: Detection of the ideal resource for multiqubit teleportation. Chin. Phys. B 24, 070302 (2015)

    Article  ADS  Google Scholar 

  32. Ai, Q.: Toward quantum teleporting living objects. Sci. Bull. 61, 110–111 (2016)

    Article  Google Scholar 

  33. Heo, J., Hong, C.H., Lim, J.I., Yang, H.J.: Bidirectional quantum teleportation of unknown photons using path polarization intra-particle hybrid entanglement and controlled unitary gates via cross-Kerr nonlinearity. Chin. Phys. B 24, 050304 (2015)

    Article  ADS  Google Scholar 

  34. Nie, Y.Y., Sang, M.H.: Effects of noise on asymmetric bidirectional controlled teleportation. Int. J. Theor. Phys. 55, 4759–4765 (2016)

    Article  MATH  Google Scholar 

  35. Choudhury, B.S., Dhara, A.: Teleportation protocol of three-qubit state using four-qubit quantum channels. Int. J. Theor. Phys. 55, 3393–3399 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  36. Wang, M.Y., Yan, F.L.: Quantum teleportation of a generic two-photon state with weak cross-Kerr nonlinearities. Quant. Inf. Process. 15, 3383–3392 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Kim, H., Lee, S.W., Jeong, H.: Two different types of optical hybrid qubits for teleportation in a lossy environment. Quant. Inf. Process. 15, 4729–4746 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Jeong, H., Bae, S., Choi, S.: Quantum teleportation between a single-rail single-photon qubit and a coherent state qubit using hybrid entanglement under decoherence effects. Quant. Inf. Process. 15, 913–927 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Zhou, L., Sheng, Y.B.: Feasible logic Bell-state analysis with linear optics. Sci. Rep. 6, 20901 (2016)

    Article  ADS  Google Scholar 

  40. Bouwmeester, D., Pan, J.W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature 390, 575–579 (1997)

    Article  ADS  MATH  Google Scholar 

  41. Riebe, M., Hffner, H., Roos, C.F., Hnsel, W., Benhelm, J., Lancaster, G.P.T., Krber, T.W., Becher, C., Schmidt-Kaler, F., James, D.F.V., Blatt, R.: Deterministic quantum teleportation with atoms. Nature 429, 734–737 (2004)

    Article  ADS  Google Scholar 

  42. Jin, X.M., Ren, J.G., Yang, B., Yi, Z.H., Zhou, F., Xu, X.F., Wang, S.K., Yang, D., Hu, Y.F., Jiang, S., Yang, T., Yin, H., Chen, K., Peng, C.Z., Pan, J.W.: Experimental free-space quantum teleportation. Nat. Photonics 4, 376–381 (2010)

    Article  ADS  Google Scholar 

  43. Metcalf, B.J., Spring, J.B., Humphreys, P.C., Thomas-Peter, N., Barbieri, M., Kolthammer, W.S., Jin, X.M., Langford, N.K., Kundys, D., Gates, J.C., Smith, B.J., Smith, P.G.R., Walmsley, I.A.: Quantum teleportation on a photonic chip. Nat. Photonics 8, 770–774 (2014)

    Article  ADS  Google Scholar 

  44. Wang, X.L., Cai, X.D., Su, Z.E., Chen, M.C., Wu, D., Li, L., Liu, N.L., Lu, C.Y., Pan, J.W.: Quantum teleportation of multiple degrees of freedom of a single photon. Nature 518, 516–519 (2015)

    Article  ADS  Google Scholar 

  45. Muralidharan, S., Panigrahi, P.K.: Quantum information splitting using multipartite cluster states. Phys. Rev. A 78, 062333 (2008)

    Article  ADS  Google Scholar 

  46. Li, W., Zha, X., Qi, J.: Tripartite quantum controlled teleportation via seven-qubit cluster state. Int. J. Theor. Phys. 55, 3927–3933 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  47. Chen, Y.: Bidirectional quantum controlled teleportation by using a genuine six-qubit entangled state. Int. J. Theor. Phys. 54, 269–272 (2015)

    Article  MATH  Google Scholar 

  48. Cabrillo, C., Cirac, J.I., García-Fernández, P., Zoller, P.: Creation of entangled states of distant atoms by interference. Phys. Rev. A 59, 1025 (1999)

    Article  ADS  Google Scholar 

  49. White, A.G., James, D.F., Eberhard, P.H., Kwiat, P.G.: Non-maximally entangled states: production, characterization, and utilization. Phys. Rev. Lett. 83(16), 3103–3107 (1999)

    Article  ADS  Google Scholar 

  50. Wang, X.L., Chen, L.K., Li, W., Huang, H.L., Liu, C., Chen, C., Luo, Y.H., Su, Z.E., Wu, D., Li, Z.D., Lu, H., Hu, Y., Jiang, X., Peng, C.Z., Li, L., Liu, N.L., Chen, Y.A., Lu, C.Y., Pan, J.W.: Experimental ten-photon entanglement. Phys. Rev. Lett. 117, 210502 (2016)

    Article  ADS  Google Scholar 

  51. Yuan, H., Liu, Y.M., Zhang, W., Zhang, Z.J.: Optimizing resource consumption, operation complexity and efficiency in quantum-state sharing. J. Phys. B: At. Mol. Opt. Phys. 41, 145506 (2008)

    Article  ADS  Google Scholar 

  52. Shi, R., Huang, L., Yang, W.: Multi-party quantum state sharing of an arbitrary two-qubit state with Bell states. Quant. Inf. Process. 10, 231–239 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the valuable suggestions made by the referees.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arpan Dhara.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choudhury, B.S., Dhara, A. Simultaneous Teleportation of Arbitrary Two-qubit and Two Arbitrary Single-qubit States Using A Single Quantum Resource. Int J Theor Phys 57, 1–8 (2018). https://doi.org/10.1007/s10773-017-3534-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-017-3534-0

Keywords

Navigation