Skip to main content

Advertisement

Log in

Designing Nanoscale Counter Using Reversible Gate Based on Quantum-Dot Cellular Automata

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Some new technologies such as Quantum-dot Cellular Automata (QCA) is suggested to solve the physical limits of the Complementary Metal-Oxide Semiconductor (CMOS) technology. The QCA as one of the novel technologies at nanoscale has potential applications in future computers. This technology has some advantages such as minimal size, high speed, low latency, and low power consumption. As a result, it is used for creating all varieties of memory. Counter circuits as one of the important circuits in the digital systems are composed of some latches, which are connected to each other in series and actually they count input pulses in the circuit. On the other hand, the reversible computations are very important because of their ability in reducing energy in nanometer circuits. Improving the energy efficiency, increasing the speed of nanometer circuits, increasing the portability of system, making smaller components of the circuit in a nuclear size and reducing the power consumption are considered as the usage of reversible logic. Therefore, this paper aims to design a two-bit reversible counter that is optimized on the basis of QCA using an improved reversible gate. The proposed reversible structure of 2-bit counter can be increased to 3-bit, 4-bit and more. The advantages of the proposed design have been shown using QCADesigner in terms of the delay in comparison with previous circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Schaller, R.R.: Moore’s law: past, present and future. IEEE Spectr. 34(6), 52–59 (1997)

    Article  Google Scholar 

  2. Kong, K., Shang, Y., Lu, R.: Counter designs in quantum-dot cellular automata. In: 10th IEEE Conference on Nanotechnology (IEEE-NANO), 2010. IEEE (2010)

  3. Lent, C.S., Tougaw, P.D.: Lines of interacting quantum-dot cells: a binary wire. J. Appl. Phys. 74(10), 6227–6233 (1993)

    Article  ADS  Google Scholar 

  4. Afrooz, S., Navimipour, N.J.: Memory designing using quantum-dot cellular automata: systematic literature review, classification and current trends. Journal of Circuits, Systems and Computers 26, 1730004 (2017)

  5. Gadim, M.R., Navimipour, N.J.: A new three-level fault tolerance arithmetic and logic unit based on quantum dot cellular automata. Microsyst. Technol. 1–11 (2018)

  6. Lent, C.S., et al.: Quantum cellular automata. Nanotechnology 4(1), 49 (1993)

    Article  ADS  Google Scholar 

  7. Gadim, M.R., Navimipour, J.N.: Quantum dot cellular automata in designing the arithmetic and logic unit: systematic literature review, classification, and current trends. Journal of Circuits, Systems and Computers 27(10), 1–34 (2018)

  8. Antonelli, D.A., et al.: Quantum-dot cellular automata (QCA) circuit partitioning: problem modeling and solutions. In: Proceedings of the 41St Annual Design Automation Conference. ACM (2004)

  9. Ahmad, F., Bhat, G.: Novel code converters based on quantum-dot cellular automata (QCA). International Journal of Science and Research 3(5), 364–371 (2012)

    Google Scholar 

  10. Pallavi, A., Muthukrishnan, M.: Implementation of code converters in QCAD. IJSRD-International Journal for Scientific Research & Development 2(06), 421–425 (2014)

  11. Abutaleb, M.: Robust and efficient quantum-dot cellular automata synchronous counters. Microelectron. J. 61, 6–14 (2017)

    Article  Google Scholar 

  12. Bennett, C.H.: Logical reversibility of computation. IBM J. Res. Dev. 17(6), 525–532 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  13. Patel, K.N., Hayes, J.P., Markov, I.L.: Fault testing for reversible circuits. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 23(8), 1220–1230 (2004)

    Article  Google Scholar 

  14. Lent, C.S., Tougaw, P.D.: A device architecture for computing with quantum dots. Proc. IEEE 85(4), 541–557 (1997)

    Article  Google Scholar 

  15. Tougaw, P.D., Lent, C.S.: Logical devices implemented using quantum cellular automata. J. Appl. Phys. 75(3), 1818–1825 (1994)

    Article  ADS  Google Scholar 

  16. Huang, J., et al.: Design and characterization of an and-or-inverter (AOI) gate for QCA implementation. In: Proceedings of the 14Th ACM Great Lakes Symposium on VLSI. ACM (2004)

  17. Vijayalakshmi, P., Kirthika, N.: Design of hybrid adder using qca with implementation of wallace tree multiplier. International Journal of Advances in Engineering & Technology 3(2), 202 (2012)

    Google Scholar 

  18. Barughi, Y.Z., Heikalabad, S.R.: A three-layer full adder/subtractor structure in quantum-dot cellular automata. Int. J. Theor. Phys. 56(9), 2848–2858 (2017)

    Article  MATH  Google Scholar 

  19. Sabbaghi-Nadooshan, R., Kianpour, M.: A novel QCA implementation of MUX-based universal shift register. J. Comput. Electron. 13(1), 198–210 (2014)

    Article  MATH  Google Scholar 

  20. Sen, B., et al.: Modular Design of testable reversible ALU by QCA multiplexer with increase in programmability. Microelectron. J. 45(11), 1522–1532 (2014)

    Article  Google Scholar 

  21. Lusth, J., Jackson, D.J.: A graph theoretic approach to quantum cellular design and analysis. J. Appl. Phys. 79(4), 2097–2102 (1996)

    Article  ADS  Google Scholar 

  22. Zhang, R., Gupta, P., Jha, N.K.: Synthesis of majority and minority networks and its applications to QCA, TPL and SET based nanotechnologies. In: 18th International Conference on VLSI Design, 2005. IEEE (2005)

  23. Sasamal, T.N., Mohan, A., Singh, A.K.: Efficient design of reversible logic ALU using coplanar quantum-dot cellular automata. Journal of Circuits, Systems and Computers 27, 1850021 (2017)

  24. Azghadi, M.R., Kavehie, O., Navi, K.: A novel design for quantum-dot cellular automata cells and full adders. arXiv:1204.2048 (2012)

  25. Bonci, L., et al.: Monte-carlo simulation of clocked and non-clocked QCA architectures. J. Comput. Electron. 1(1), 49–53 (2002)

    Article  Google Scholar 

  26. Kyosun, K., Kaijie, W., Karri, R.: Quantum-dot cellular automata design guideline. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 89(6), 1607–1614 (2006)

    ADS  Google Scholar 

  27. Sheikhfaal, S., et al.: Designing efficient QCA logical circuits with power dissipation analysis. Microelectron. J. 46(6), 462–471 (2015)

    Article  Google Scholar 

  28. Navi, K., et al.: A new quantum-dot cellular automata full-adder. Microelectron. J. 41(12), 820–826 (2010)

    Article  Google Scholar 

  29. Yang, X., et al.: Design and simulation of sequential circuits in quantum-dot cellular automata: falling edge-triggered flip-flop and counter study. Microelectron. J. 41(1), 56–63 (2010)

    Article  Google Scholar 

  30. Roohi, A., DeMara, R.F., Khoshavi, N.: Design and evaluation of an ultra-area-efficient fault-tolerant QCA full adder. Microelectron. J. 46(6), 531–542 (2015)

    Article  Google Scholar 

  31. Morita, K.: Reversible computing and cellular automata—A survey. Theor. Comput. Sci. 395(1), 101–131 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  32. Hassan, S.A., Sharan, P.: Low power quantum gates for the implementation of reversible memory elements using quantum dot cellular automata. In: 3rd International Conference on Computing for Sustainable Global Development (INDIACom), 2016. IEEE (2016)

  33. Toffoli, T.: Reversible computing. In: International Colloquium on Automata, Languages, and Programming. Springer (1980)

  34. Bahar, A.N., Waheed, S., Habib, M.A.: An efficient layout design of fredkin gate in quantum-dot cellular automata (QCA). Düzce Üniversitesi Bilim ve Teknoloji Dergisi 3(1), 219–225 (2015)

  35. Khan, A., Chakrabarty, R.: Design of ring and Johnson counter in a single reconfigurable logic circuit in quantum dot cellular automata. Int. J. Comput. Sci. Technol. 4(1), 363–367 (2012)

    Google Scholar 

  36. Angizi, S., et al.: Design and evaluation of new majority gate-based RAM cell in quantum-dot cellular automata. Microelectron. J. 46(1), 43–51 (2015)

    Article  Google Scholar 

  37. Askari, M., Taghizadeh, M., Fardad, K.: Design and analysis of a sequential ring counter for QCA implementation. In: International Conference on Computer and Communication Engineering, 2008. ICCCE 2008. IEEE (2008)

  38. Sarmadi, S., et al.: Designing counter using inherent capability of quantum-dot cellular automata loops. International Journal of Modern Education and Computer Science 7(9), 22 (2015)

    Article  Google Scholar 

  39. Sarker, A., et al.: A novel presentation of peres gate (pg) in quantum-dot cellular automata (QCA). European Scientific Journal 10(21), 101–106 (2014)

  40. Ali, M.B., Rahman, M.S., Parvin, T.: Optimized design of carry skip BCD adder using new FSNG reversible logic gates. IJCSI Int. J. Comput. Sci. 9(9), 4 (2012)

  41. Walus, K., et al.: QCADesigner: a rapid design and simulation tool for quantum-dot cellular automata. IEEE Trans. Nanotechnol. 3(1), 26–31 (2004)

    Article  ADS  Google Scholar 

  42. Angizi, S., et al.: Designing quantum-dot cellular automata counters with energy consumption analysis. Microprocess. Microsyst. 39(7), 512–520 (2015)

    Article  Google Scholar 

  43. Purkayastha, T., De, D., Das, K.: A novel pseudo random number generator based cryptographic architecture using quantum-dot cellular automata. Microprocess. Microsyst. 45, 32–44 (2016)

    Article  Google Scholar 

  44. Walus, K., Schulhof, G.: QCADesigner homepage. Online: http://www.qcadesigner.ca (2002)

  45. Thapliyal, H., Ranganathan, N.: Testable reversible latches for molecular QCA. In: 8th IEEE Conference on Nanotechnology, 2008. NANO’08. IEEE (2008)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nima Jafari Navimipour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moharrami, E., Navimipour, N.J. Designing Nanoscale Counter Using Reversible Gate Based on Quantum-Dot Cellular Automata. Int J Theor Phys 57, 1060–1081 (2018). https://doi.org/10.1007/s10773-017-3638-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-017-3638-6

Keywords

Navigation