Skip to main content
Log in

Toward Efficient Design of Reversible Logic Gates in Quantum-Dot Cellular Automata with Power Dissipation Analysis

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Nanotechnologies, remarkably Quantum-dot Cellular Automata (QCA), offer an attractive perspective for future computing technologies. In this paper, QCA is investigated as an implementation method for designing area and power efficient reversible logic gates. The proposed designs achieve superior performance by incorporating a compact 2-input XOR gate. The proposed design for Feynman, Toffoli, and Fredkin gates demonstrates 28.12, 24.4, and 7% reduction in cell count and utilizes 46, 24.4, and 7.6% less area, respectively over previous best designs. Regarding the cell count (area cover) that of the proposed Peres gate and Double Feynman gate are 44.32% (21.5%) and 12% (25%), respectively less than the most compact previous designs. Further, the delay of Fredkin and Toffoli gates is 0.75 clock cycles, which is equal to the delay of the previous best designs. While the Feynman and Double Feynman gates achieve a delay of 0.5 clock cycles, equal to the least delay previous one. Energy analysis confirms that the average energy dissipation of the developed Feynman, Toffoli, and Fredkin gates is 30.80, 18.08, and 4.3% (for 1.0 E k energy level), respectively less compared to best reported designs. This emphasizes the beneficial role of using proposed reversible gates to design complex and power efficient QCA circuits. The QCADesigner tool is used to validate the layout of the proposed designs, and the QCAPro tool is used to evaluate the energy dissipation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Lent, C.S., Tougaw, P.D., Porod, W., Bernstein, G. H.: Quantum cellular automata. Nanotechnology 4(1), 49 (1993)

    Article  ADS  Google Scholar 

  2. Lent, C.S., Tougaw, P.D.: A device architecture for computing with quantum dots. Proc. IEEE 85, 541–557 (1997)

    Article  Google Scholar 

  3. Landauer, R.: Irreversibility and heat generation in the computational process. IBM J. Res. Dev. 5, 183–191 (1961)

    Article  MATH  Google Scholar 

  4. Bennett, C.H.: Logical reversibility of computation. IBM J. Res. Dev. 17, 525–532 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  5. Abdullah-Al-shafi, M., Islam, M.S., Bahar, A.N.: A review on reversible logic gates and it’s QCA implementation. Int. J. Comput. Appl. 128(2), 27–34 (2015)

    Google Scholar 

  6. Mohammadi, Z., Mohammadi, M.: Implementing a one-bit reversible full adder using quantum-dot cellular automata. Quantum Inf. Process. 13, 2127–2147 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Das, J.C., De, D.: Reversible binary to grey and grey to binary code converter using QCA. IETE J. Res. 61(3), 223–229 (2015)

    Article  Google Scholar 

  8. Das, J.C., De, D.: Reversible comparator design using quantum dot-cellular automata. IETE J. Res. 62(3), 323–330 (2016)

    Article  Google Scholar 

  9. Das, J.C., De, D.: Novel low power reversible binary incrementer design using quantum-dot cellular automata. Microprocess. Microsyst. 42, 10–23 (2016)

    Article  Google Scholar 

  10. Singh, G., Sarin, R.K., Raj, B.: Design and analysis of area efficient QCA based reversible logic gates. Microprocess. Microsyst. 52, 59–68 (2017)

    Article  Google Scholar 

  11. Chabi, A.M., Roohi, A., Khademolhosseini, H., Sheikhfaal, S.: Towards ultra-efficient QCA reversible circuits. Microprocess. Microsyst. 49, 127–138 (2017)

    Article  Google Scholar 

  12. Sasamal, T.N., Singh, A.K., Mohan, A.: Efficient design of reversible ALU in quantum-dot cellular automata. Int. J. Light Electron. Opt. 127(15), 6172–6182 (2016)

    Article  Google Scholar 

  13. Sasamal, T.N., Singh, A.K., Ghanekar, U.: Design of non-restoring binary array divider in majority logic-based QCA. Electron. Lett. 52, 2001–2003 (2016)

    Article  Google Scholar 

  14. Rad, S.K., Heikalabad, S.R.: Reversible flip-flops in quantum-dot cellular automata. Int. J. Theor. Phys. 56, 2990–3004 (2017)

    Article  MATH  Google Scholar 

  15. Barughi, Y.Z., Heikalabad, S.R.: A three-layer full adder/subtractor structure in quantum-dot cellular automata. Int. J. Theor. Phys. 56, 2848–2858 (2017)

    Article  MATH  Google Scholar 

  16. Bahar, A. N., Waheed, S., Habib, M. A.: A novel presentation of reversible logic gate in Quantum-dot Cellular Automata (QCA). In: International Conference on Electrical Engineering and Information & Communication Technology, pp. 1–6. Dhaka (2014)

  17. Debnath, B., Das, J. C., De, D.: Reversible logic-based image steganography using quantum dot cellular automata for secure nanocommunication. IET Circ. Dev. Syst. 11(1), 58–67 (2017)

    Article  Google Scholar 

  18. Hennessy, K., Lent, C.S.: Clocking of molecular quantum-dot cellular automata. J. Vac. Sci. Technol. B 19, 1752–1755 (2001)

    Article  Google Scholar 

  19. Feynman, R.P.: Quantum mechanical computers. Opt. News 11(2), 11–20 (1985)

    Article  Google Scholar 

  20. Toffoli, T.: Reversible computing, Tech memo - MIT/LCS/TM-151, MITLab for Comp. Sci. (1980)

  21. Fredkin, E., Toffoli, T.: Conservative Logic in Collision-Based Computing, pp 47–81. Springer, Berlin (2002)

    Book  Google Scholar 

  22. Peres, A.: Reversible logic and quantum computers. Phys. Rev. A, Gen. Phys. 32(6), 3266–3276 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  23. Parhami, B.: Fault-tolerant reversible circuits. In: Fortieth Asilomar Conference on Signals, Systems and Computers, ACSSC’06, pp. 1726–1729 (2006)

  24. Schulhof, G., Walus, K., Jullien, G.A.: Simulation of random cell displacements in QCA. ACM J. Emerg. Technol. Comput. Syst. 3(1), 1–14 (2007)

    Article  Google Scholar 

  25. Pudi, V, Sridharan, K.: Low complexity design of Ripple Carry and Brent–Kung Adders in QCA. IEEE Trans. Nanotechnol. 11(1), 105–119 (2012)

    Article  ADS  Google Scholar 

  26. Walus, K., Dysart, T., Jullien, G., Budiman, R.: QCA designer: a rapid design and simulation tool for quantum-dot cellular automata. IEEE Trans. Nanotechnol. 3 (1), 26–29 (2004)

    Article  ADS  Google Scholar 

  27. Srivastava, S., Asthana, A., Bhanja, S., Sarkar, S.: QCAPro—an error power estimation tool for QCA circuit design. In: IEEE International Symposium on Circuits and Systems, pp. 2377–2380 (2011)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trailokya Nath Sasamal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sasamal, T.N., Singh, A.K. & Ghanekar, U. Toward Efficient Design of Reversible Logic Gates in Quantum-Dot Cellular Automata with Power Dissipation Analysis. Int J Theor Phys 57, 1167–1185 (2018). https://doi.org/10.1007/s10773-017-3647-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-017-3647-5

Keywords

Navigation