Skip to main content
Log in

Modular Adder Designs Using Optimal Reversible and Fault Tolerant Gates in Field-Coupled QCA Nanocomputing

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The challenges which the CMOS technology is facing toward the end of the technology roadmap calls for an investigation of various logical and technological solutions to CMOS at the nano scale. Two such paradigms which are considered in this paper are the reversible logic and the quantum-dot cellular automata (QCA) nanotechnology. Firstly, a new 3 × 3 reversible and universal gate, RG-QCA, is proposed and implemented in QCA technology using conventional 3-input majority voter based logic. Further the gate is optimized by using explicit interaction of cells and this optimized gate is then used to design an optimized modular full adder in QCA. Another configuration of RG-QCA gate, CRG-QCA, is then proposed which is a 4 × 4 gate and includes the fault tolerant characteristics and parity preserving nature. The proposed CRG-QCA gate is then tested to design a fault tolerant full adder circuit. Extensive comparisons of gate and adder circuits are drawn with the existing literature and it is envisaged that our proposed designs perform better and are cost efficient in QCA technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Moore, G.E.: Cramming more components onto integrated circuits. Proc. IEEE 86, 82–85 (1998)

    Article  Google Scholar 

  2. Moore, G.E.: No exponential is forever: but “Forever” can be delayed![semiconductor industry]. In: Solid-State Circuits Conference, 2003. Digest of Technical Papers. ISSCC, pp. 20–23. 2003 IEEE International (2003)

  3. Dennard, R., Gaensslen, F., Kuhn, L., Yu, H.: Design of micron MOS switching devices? IEDM Dig. Techn. Pap., p. 344 (1972)

  4. Iwai, H.: Roadmap for 22nm and beyond. Microelect. Eng. 86, 1520–1528 (2009)

    Article  Google Scholar 

  5. Endo, M., Strano, M.S., Ajayan, P.M.: Potential applications of carbon nanotubes. In: Carbon Nanotubes, Edition, pp. 13–62. Springer, Berlin (2007)

  6. Gautier, J.: Beyond CMOS: quantum devices. Microelect. Eng. 39, 263–272 (1997)

    Article  Google Scholar 

  7. Lent, C.S., Tougaw, P.D., Porod, W., Bernstein, G.H.: Quantum cellular automata. Nanotechnology 4, 49 (1993)

    Article  ADS  Google Scholar 

  8. Sugahara, S.: Perspective on field-effect spin-transistors. Phys. Status Solidi (c) 3, 4405–4413 (2006)

    Article  ADS  Google Scholar 

  9. Landauer, R.: Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 5, 183–191 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bennett, C.H.: Logical reversibility of computation. IBM J. Res. Dev. 17, 525–532 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  11. Feynman, R.P.: Quantum mechanical computers. Found. Phys. 16, 507–531 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  12. Fredkin, E., Toffoli, T.: Conservative logic. Int. J. Theor. Phys. 21, 219–253 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  13. Parhami, B.: Fault-tolerant reversible circuits. In: Fortieth Asilomar Conference on Signals, Systems and Computers, 2006. ACSSC’06, pp. 1726–1729 (2006)

  14. Peres, A.: Reversible logic and quantum computers. Phys. Rev. A 32, 3266 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  15. Toffoli, T.: Reversible computing. In: Automata, Languages and Programming, pp. 632–644 (1980)

  16. Lent, C.S., Tougaw, P.D., Porod, W.: Bistable saturation in coupled quantum dots for quantum cellular automata. Appl. Phys. Lett. 62, 714–716 (1993)

    Article  ADS  Google Scholar 

  17. Porod, W.: Quantum-dot devices and quantum-dot cellular automata. J. Frankl. Inst. 334, 1147–1175 (1997)

    Article  MATH  Google Scholar 

  18. Tougaw, P.D., Lent, C.S.: Logical devices implemented using quantum cellular automata. J. Appl. Phys. 75, 1818–1825 (1994)

    Article  ADS  Google Scholar 

  19. Walus, K., Jullien, G.A.: Design tools for an emerging SoC technology: quantum-dot cellular automata. Proc. IEEE 94, 1225–1244 (2006)

    Article  Google Scholar 

  20. Abedi, D., Jaberipur, G., Sangsefidi, M.: Coplanar full adder in quantum-dot cellular automata via clock-zone-based crossover. IEEE Trans. Nanotechnol. 14, 497–504 (2015)

    Article  ADS  Google Scholar 

  21. Devadoss, R., Paul, K., Balakrishnan, M.: Coplanar QCA crossovers. Elect. Lett. 45, 1234–1235 (2009)

    Article  Google Scholar 

  22. Hennessy, K., Lent, C.S.: Clocking of molecular quantum-dot cellular automata. J. Vac. Sci. Technol. B: Microelectron. Nanometer Struct.–Process. Meas. Phenom. 19, 1752–1755 (2001)

    Article  ADS  Google Scholar 

  23. Lent, C.S., Isaksen, B.: Clocked molecular quantum-dot cellular automata. IEEE Trans. Elect. Dev. 50, 1890–1896 (2003)

    Article  ADS  Google Scholar 

  24. Liu, M., Lent, C.S.: Bennett and Landauer clocking in quantum-dot cellular automata. In: 10th International Workshop on Computational Electronics, pp. 120–121 (2004)

  25. Orlov, A.O., Amlani, I., Kummamuru, R.K., Ramasubramaniam, R., Toth, G., Lent, C.S., et al.: Experimental demonstration of clocked single-electron switching in quantum-dot cellular automata. Appl. Phys. Lett. 77, 295–297 (2000)

    Article  ADS  Google Scholar 

  26. Orlov, A.O., Kummamuru, R., Ramasubramaniam, R., Lent, C.S., Bemstein, G., Snider, G.L.: Clocked quantum-dot cellular automata devices: experimental studies. In: Proceedings of the 2001 1st IEEE Conference on Nanotechnology, 2001. IEEE-NANO 2001, pp. 425–430 (2001)

  27. Ma, X., Huang, J., Metra, C., Lombardi, F.: Testing reversible 1D arrays for molecular QCA. In: 21st IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems, 2006. DFT’06, pp. 71–79 (2006)

  28. Misra, N.K., Wairya, S., Sen, B.: Design of conservative, reversible sequential logic for cost efficient emerging nano circuits with enhanced testability. Ain Shams Eng. J. (2017)

  29. Roohi, A., Zand, R., Angizi, S., Demara, R.F.: A parity-preserving reversible QCA gate with self-checking cascadable resiliency. In: IEEE Transactions on Emerging Topics in Computing (2016)

  30. Sasamal, T.N., Singh, A.K., Mohan, A.: Efficient design of reversible alu in quantum-dot cellular automata. Optik-Intern. J. Light Elect. Opt. 127, 6172–6182 (2016)

    Article  Google Scholar 

  31. Sen, B., Dutta, M., Goswami, M., Sikdar, B.K.: Modular Design of testable reversible ALU by QCA multiplexer with increase in programmability. Microelect. J. 45, 1522–1532 (2014)

    Article  Google Scholar 

  32. Thapliyal, H., Ranganathan, N., Kotiyal, S.: Design of testable reversible sequential circuits. IEEE Trans. Very Large Scale Integ. (VLSI) Syst. 21, 1201–1209 (2013)

    Article  Google Scholar 

  33. Ahmad, F., Bhat, G.M., Khademolhosseini, H., Azimi, S., Angizi, S., Navi, K.: Towards single layer quantum-dot cellular automata adders based on explicit interaction of cells. J. Comput. Sci. 16, 8–15 (2016)

    Article  MathSciNet  Google Scholar 

  34. Bilal, B., Ahmed, S., Kakkar, V.: QCA based efficient toffoli gate design and implementation for nanotechnology applications. Int. J. Eng. Technol. 9(3S), 84–92 (2017)

    Article  Google Scholar 

  35. Bilal, B., Ahmed, S., Kakkar, V.: Optimal realization of universality of peres gate using explicit interaction of cells in quantum dot cellular automata nanotechnology. Int. J. Intell. Syst. Appl. 9(6), 75–84 (2017)

    Google Scholar 

  36. Thapliyal, H., Ranganathan, N.: Conservative QCA Gate (CQCA) for designing concurrently testable molecular QCA circuits. In: 22nd IEEE International Conference on VLSI Design, 2009, pp. 511–516 (2006)

  37. Liu, W., Lu, L., O’Neill, M., Swartzlander, E.E. Jr.: A first step towards cost functions for quantum cellular automata designs. IEEE Trans. Nanotechnol. 13(3), 476–487 (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suhaib Ahmed.

Appendix A: Majority Gate Representations

Appendix A: Majority Gate Representations

Fig. 14
figure 14

Majority gate representation of output P in (3) of proposed RG-QCA gate

Fig. 15
figure 15

Majority gate representation of output Q in (4) of proposed RG-QCA gate

Fig. 16
figure 16

Majority gate representation of output R in (5) of proposed RG-QCA gate

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bilal, B., Ahmed, S. & Kakkar, V. Modular Adder Designs Using Optimal Reversible and Fault Tolerant Gates in Field-Coupled QCA Nanocomputing. Int J Theor Phys 57, 1356–1375 (2018). https://doi.org/10.1007/s10773-018-3664-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-018-3664-z

Keywords

Navigation