Skip to main content
Log in

Semi-quantum Secure Direct Communication Scheme Based on Bell States

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Recently, the idea of semi-quantumness has been often used in designing quantum cryptographic schemes, which allows some of the participants of a quantum cryptographic scheme to remain classical. One of the reasons why this idea is popular is that it allows a quantum information processing task to be accomplished by using quantum resources as few as possible. In this paper, we extend the idea to quantum secure direct communication(QSDC) by proposing a semi-quantum secure direct communication scheme. In the scheme, the message sender, Alice, encodes each bit into a Bell state \(|\varphi ^{+}\rangle =\frac {1}{\sqrt 2}(|00\rangle +|11\rangle )\) or \(|{\Psi }^{+}\rangle =\frac {1}{\sqrt 2}(|01\rangle +|10\rangle )\), and the message receiver, Bob, who is classical in the sense that he can either let the qubit he received reflect undisturbed, or measure the qubit in the computational basis |0〉, |1〉 and then resend it in the state he found. Moreover, the security analysis of our scheme is also given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bennett. C.H., Brassard, G.: Public key distribution and coin tossing. In: Proceedings of the IEEE international conference on computers, systems and signal processing, Bangalore, pp. 175–179. IEEE, New York (1984)

  2. Hillery, M., Buoek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Bostrom, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)

    Article  ADS  Google Scholar 

  4. Cai, Q.: The Ping-Pong protocol can be attacked without eavesdropping. Phys. Rev. Lett. 91, 109801 (2003)

    Article  ADS  Google Scholar 

  5. Wojcik, A.: Eavesdropping on the ping-pong quantum communication protocol. Phys. Rev. Lett. 90, 157901 (2003)

    Article  ADS  Google Scholar 

  6. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A 68, 042317 (2003)

    Article  ADS  Google Scholar 

  7. Wang, C., Deng, F.G., Li, Y.S., et al.: Quantum secure direct communication with high-dimension quantum superdense coding. Phys. Rev. A 71, 044305 (2005)

    Article  ADS  Google Scholar 

  8. Lee, H., Lim, J., Yang, H.J.: Quantum direct communication with authentication. Phys. Rev. A 73, 042305 (2006)

    Article  ADS  Google Scholar 

  9. Zhang, Z., Liu, J., Wang, D., et al.: Comment on Quantum direct communication with authentication. Phys. Rev. A 75, 026301 (2007)

    Article  ADS  Google Scholar 

  10. Deng, F.G., Li, X.H., Li, C.Y., et al.: Quantum secure direct communication network with Einstein-CPodolsky-CRosen pairs. Phys. Lett. A 359, 359–365 (2006)

    Article  ADS  MATH  Google Scholar 

  11. Zhu, A.D., Xia, Y., Fan, Q.B., et al.: Secure direct communication based on secret transmitting order of particles. Phys. Rev. A 73, 022338 (2006)

    Article  ADS  Google Scholar 

  12. Li, X.H., Deng, F.G., Zhou, H.Y.: Improving the security of secure direct communication based on the secret transmitting order of particles. Phys. Rev. A 74, 054302 (2006)

    Article  ADS  Google Scholar 

  13. Lin, S., Wen, Q.Y., Gao, F., et al.: Quantum secure direct communication with χ-type entangled states. Phys. Rev. A 78, 064304.9 (2008)

    ADS  Google Scholar 

  14. Beige, A., Englert, B.G., Kurtsiefer, C., et al.: Secure communication with single-photon two-qubit states. J. Phys. A Math. Gen. 35, L407 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Deng, F.G., Long, G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69, 052319 (2004)

    Article  ADS  Google Scholar 

  16. Wang, J., Zhang, Q., Tang, C.: Quantum secure direct communication based on order rearrangement of single photons. Phys. Lett. A 358, 256–258 (2006)

    Article  ADS  MATH  Google Scholar 

  17. Luo, Y.-P., Hwang, T.: Authenticated semi-quantum direct communication protocols using Bell states. Quantum Inf. Process. 15, 947–958 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Zou, X.F., Qiu, D.W.: Three-Step semiquantum secure direct communication protocol. Science China Physics, Mechanics Astronomy (2014)

  19. Boyer, M., Kenigsberg, D., Mor, T.: Quantum key distribution with classical Bob. Phys. Rev. Lett. 99(14), 140501 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Li, Q., Chan, W.H., Long, D.Y.: Semiquantum secret sharing using entangled states. Phys. Rev. A. 82(2), 022303 (2010)

    Article  ADS  Google Scholar 

  21. Li, L.Z., Qiu, D.W., Mateus, P.: Quantum secret sharing with classical Bobs. J. Phys. A: Math. Theor. 46, 045304 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Lin, J., Yang, C.W., Tsai, C.W., Hwang, T.: Intercept-Resend attacks on semi-quantum secret sharing and the improvements. Int. J. Theor. Phys. 52, 156–162 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Yang, C.W., Hwang, T.: Efficient key construction on semi-quantum secret sharing protocols. Int. J. Quant. Inform. 11(5), 1350052 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Xie, C., Li, L.Z., Qiu, D.W.: A novel Semi-Quantum secret sharing scheme of specific bits. Int. J. Theor. Phys. 54, 3819–3824 (2015). 57(9) 1696-1702

    Article  MathSciNet  MATH  Google Scholar 

  25. Krawec, W.O.: Mediated semiquantum key distribution. Phys. Rev. A. 91(3), 032323 (2015)

    Article  ADS  Google Scholar 

  26. Li, Q., Chan, W.H., Zhang, S.Y.: Semiquantum key distribution with secure delegated quantum computation. Sci. Rep. 6, 19898 (2015)

    Article  ADS  Google Scholar 

  27. He J., Li Q., Wu C., Chan W.H., Zhang S.: Measurement-device-independent semiquantum key distribution. Int. J. Quantum Inf. 16, 1850012 (2018)

Download references

Acknowledgments

We are very grateful to the reviewers and the editors for their invaluable comments and detailed suggestions that helped to improve the quality of the present paper. This work is supported by the National Natural Science Foundation of China (Grant Nos. 61502179, 61472452 and 61772565), the Natural Science Foundation of Guangdong Province of China (No. 2017A030313378), the Science and Technology Program of Guangzhou City of China (No. 201707010194), the Fundamental Research Funds for the Central Universities (No. 17lgzd29).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lvzhou Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, C., Li, L., Situ, H. et al. Semi-quantum Secure Direct Communication Scheme Based on Bell States. Int J Theor Phys 57, 1881–1887 (2018). https://doi.org/10.1007/s10773-018-3713-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-018-3713-7

Keywords

Navigation