Skip to main content
Log in

Six-Qubit Decoherence-Free State Measurement Method and its Application to Development of Authenticated Quantum Secure Direct Communication Protocol

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

This paper proposes a measurement method capable of distinguishing six-qubit decoherence-free states. In addition, based on this measurement method, the paper presents an authenticated quantum secure direct communication (AQSDC) protocol that is simultaneously robust against both collective dephasing noise and collective rotation noise. This AQSDC protocol enables a sender to transmit secure and authenticated messages to a receiver via one-step quantum transmission without using classical channels. The new measurement method enables the qubit efficiency of the AQSDC protocol to be superior to those of existing AQSDC protocols. The analyses presented herein demonstrate that the AQSDC protocol is secure and effective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boström, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)

    Article  ADS  Google Scholar 

  2. Bourennane, M., Eibl, M., Gaertner, S., Kurtsiefer, C., Cabello, A., Weinfurter, H.: Decoherence-free quantum information processing with four-photon entangled states. Phys. Rev. Lett. 92, 107901 (2004)

    Article  ADS  Google Scholar 

  3. Cabello, A.: Six-qubit permutation-based decoherence-free orthogonal basis. Phys. Rev. A 75, 020301 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  4. Cai, Q.-Y.: Eavesdropping on the two-way quantum communication protocols with invisible photons. Phys. Rev. A 351(1–2), 23–25 (2006)

    MathSciNet  MATH  Google Scholar 

  5. Gao, F., Wen, Q.Y., Zhu, F.C.: Comment on: Quantum exam. Phys. Lett. A 360(6), 748–750 (2007)

    Article  ADS  Google Scholar 

  6. Jing, Y., Chuan, W., Ru, Z.: Faithful quantum secure direct communication protocol against collective noise. Chin. Phys. B 19(11), 110306 (2010)

    Article  Google Scholar 

  7. Kampe, J., Bacon, D., Lidar, D.A., Whaley, K.B.: Theory of decoherence-free fault-tolerant universal quantum computation. Phys. Rev. A 63, 042307 (2001)

    Article  ADS  Google Scholar 

  8. Kao, S.H., Hwang, T.: Multiparty controlled quantum secure direct communication based on quantum search algorithm. Quantum Inf. Process. 12(12), 3791–3805 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Li, X.H., Deng, F.G., Zhou, H.Y.: Improving the security of secure direct communication based on the secret transmitting order of particles. Phys. Rev. A 74, 054302 (2006)

    Article  ADS  Google Scholar 

  10. Lin, J., Hwang, T.: Bell state entanglement swappings over collective noises and their applications on quantum cryptography. Quantum Inf. Process. 12(2), 1089–1107 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Lo, H.K., Chau, H.F.: Unconditional security of quantum key distribution over arbitrarily long distances. Science 283(5410), 2050–2056 (1999)

    Article  ADS  Google Scholar 

  12. Sun, Y., Wen, Q.Y., Gao, F., Zhu, F.C.: Robust variations of the Bennett-Brassard 1984 protocol against collective noise. Phys. Rev. A 80, 032321 (2009)

    Article  ADS  Google Scholar 

  13. Wang, J., Zhang, Q., Tang, C.: Quantum secure direct communication without using perfect quantum channel. Int. J. Mod. Phys. C 17(5), 685 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Wang, T.Y., Wen, Q.Y., Zhu, F.C.: Secure authentication of classical messages with decoherence-free states. Opt. Commun. 282(16), 3382–3385 (2009)

    Article  ADS  Google Scholar 

  15. Yan, C., Zhang, S.B., Yan, L.L., Han, G.H.: Robust quantum secure direct communication and authentication protocol against decoherence noise based on six-qubit DF state. Chin. Phys. B 24(5), 050307 (2015)

    Article  Google Scholar 

  16. Yang, C.W., Hwang, T.: Improved QSDC protocol over a collective-dephasing noise channel. Int. J. Theor. Phys. 51(12), 3941–3950 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Yang, C.W., Hwang, T.: Quantum dialogue protocols immune to collective noise. Quantum Inf. Process. 12(6), 2131–2142 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Yang, C.W., Tsai, C.W., Hwang, T.: Fault tolerant deterministic quantum communications using GHZ states over collective-noise channels. Quantum Inf. Process. 12(9), 3043–3055 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Yang, C.-W., Hwang, T: Fault tolerant authenticated quantum direct communication immune to collective noises. Quantum Inf. Process. 12(11), 3495–3509 (2013). (EI, SCI)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We would like to thank the Ministry of Science and Technology of the Republic of China for financially supporting this research under Contract No. MOST 104-2221-E-006-102-.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tzonelih Hwang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsai, CL., Hwang, T. Six-Qubit Decoherence-Free State Measurement Method and its Application to Development of Authenticated Quantum Secure Direct Communication Protocol. Int J Theor Phys 57, 2513–2522 (2018). https://doi.org/10.1007/s10773-018-3773-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-018-3773-8

Keywords

Navigation