Skip to main content

Advertisement

Log in

Modular Design of Ultra-Efficient Reversible Full Adder-Subtractor in QCA with Power Dissipation Analysis

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Quantum-dot Cellular Automata (QCA) is an emerging nanotechnology and a possible alternative to overcome the limitations of complementary metal oxide semiconductor (CMOS) technology. One of the most attractive fields in QCA is the implementation of digital system. As, information loss is a major issue in irreversible digital computation systems. Therefore, reduced heat dissipation is an increasing demand for nano-scale computations. Reversible logic designs are good competitor towards sustainable digital systems. This paper presents two new reversible logic gates viz., 3 × 3-New Reversible Gate (3 × 3-NRG), and Modified Feynman Gate (MFG). The proposed gates are tested by designing an optimal reversible single layer full adder-subtractor circuit (RFAS). Based on the simulation results, it is observed that the proposed RFAS is an efficient arithmetic logic circuit and has reduced area, less circuit complexity and less number of clock delays over existing designs. In addition, a complete propagation path flow of the RFAS is also presented. Meanwhile, the energy dissipation analysis of the proposed RFAS is verified using three separate energy levels (γ = 0.5Ek, γ = 1.0, Ek and γ = 1.5Ek), at T = 2 K in QCAPro tool. It is observed that the proposed RFAS design dissipates less energy compared to the traditional approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Lent, C.S., Tougaw, P.D., Porod, W., Bernstein, G.H.: Quantum cellular automata. Nanotechnology 4, 49 (1993)

    Article  ADS  Google Scholar 

  2. Smith, C.G.: Computation without current. Science 284, 274–274 (1999)

    Article  Google Scholar 

  3. Bilal, B., Ahmed, S., Kakkar, V.: Modular adder designs using optimal reversible and fault tolerant gates in field-coupled QCA nanocomputing. Int. J. Theor. Phys. 57(5), 1356–1375 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bilal, B., Ahmed, S., Kakkar, V.: An insight into beyond CMOS Next generation computing using quantum-dot cellular automata nanotechnology. Int. J. Eng. Manuf. 8(1), 25–37 (2018)

    Google Scholar 

  5. Tougaw, P.D., Lent, C.S.: Logical devices implemented using quantum cellular automata. J. Appl. Phys. 75, 1818–1825 (1994)

    Article  ADS  Google Scholar 

  6. Frost, S.E., Rodrigues, A.F., Janiszewski, A.W., Rausch, R.T., Kogge, P.M.: Memory in Motion: a Study of Storage Structures in QCA. In: First Workshop on Non-Silicon Computing (2002)

  7. Niemier, M.T., Kogge, P.M.: Logic in wire: using quantum dots to implement a microprocessor. In: The 6th IEEE International Conference on Electronics, Circuits and Systems, 1999. Proceedings of ICECS’99, pp. 1211–1215 (1999)

  8. Amlani, I., Orlov, A.O., Toth, G., Bernstein, G.H., Lent, C.S., Snider, G.L.: Digital logic gate using quantum-dot cellular automata. Science 284, 289–291 (1999)

    Article  ADS  Google Scholar 

  9. Bilal, B., Ahmed, S., Kakkar, V.: Quantum dot cellular automata: a new paradigm for digital design. Int. J. Nanoelectron. Mater. 11(1), 87–98 (2018)

    Google Scholar 

  10. Landauer, R.: Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 5, 183–191 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bennett, C.H.: Logical reversibility of computation. IBM J. Res. Dev. 17, 525–532 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bilal, B., Ahmed, S., Kakkar, V.: QCA based efficient Toffoli gate design and implementation for nanotechnology applications. Int. J. Eng. Technol. 9, 84–92 (2017)

    Article  Google Scholar 

  13. Bilal, B., Ahmed, S., Kakkar, V.: Optimal realization of Universality of Peres gate using explicit interaction of cells in quantum dot cellular automata nanotechnology. Int. J. Intell. Syst. Appl. 9, 75 (2017)

    Google Scholar 

  14. Ahmad, F.: An optimal design of QCA based 2n: 1/1: 2n multiplexer/demultiplexer and its efficient digital logic realization. Microprocess. Microsyst. 56, 64–75 (2018)

    Article  Google Scholar 

  15. Sen, B., Dutta, M., Goswami, M., Sikdar, B.K.: Modular design of testable reversible ALU by QCA multiplexer with increase in programmability. Microelectron. J. 45, 1522–1532 (2014)

    Article  Google Scholar 

  16. Sen, B., Dutta, M., Some, S., Sikdar, B.K.: Realizing reversible computing in QCA framework resulting in efficient design of testable ALU. ACM J. Emerg. Technol. Comput. Syst. (JETC) 11, 30 (2014)

    Google Scholar 

  17. Ma, X., Huang, J., Metra, C., Lombardi, F.: Reversible and testable circuits for molecular QCA design. In: Emerging Nanotechnologies, ed, pp. 157–202. Springer (2008)

  18. Mohammadi, Z., Mohammadi, M.: Implementing a one-bit reversible full adder using quantum-dot cellular automata. Quantum Inf. Process. 13, 2127–2147 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Taherkhani, E., Moaiyeri, M.H., Angizi, S.: Design of an ultra-efficient reversible full adder-subtractor in quantum-dot cellular automata. Optik-Int. J. Light Electron. Opt. 142, 557–563 (2017)

    Article  Google Scholar 

  20. Biswas, P.K., Bahar, A.N., Habib, M.A., Nahid, N.M., Bhuiyan, M.M.R.: An efficient design of reversible subtractor in quantum-dot cellular automata. Int. J. Grid Distributed Comput. 10, 13–23 (2017)

    Article  Google Scholar 

  21. Thapliyal, H., Ranganathan, N.: Reversible logic-based concurrently testable latches for molecular QCA. IEEE Trans. Nanotechnol. 9, 62–69 (2010)

    Article  ADS  Google Scholar 

  22. Sen, B., Saran, D., Saha, M., Sikdar, B.K.: Synthesis of reversible universal logic around QCA with online testability. In: 2011 International Symposium on Electronic System Design (ISED), pp. 236–241 (2011)

  23. Kanth, B.R., Krishna, B.M., Sridhar, M., Swaroop, V.S.: A distinguish between reversible and conventional logic gates. Int. J. Eng. Res. Appl. 2(2), 148–151 (2012)

    Google Scholar 

  24. Lombardi, F., Huang, J.: Design and Test of Digital Circuits by Quantum-Dot Cellular Automata. Artech House, Norwood (2007)

    Google Scholar 

  25. Timler, J., Lent, C.S.: Power gain and dissipation in quantum-dot cellular automata. J. Appl. Phys. 91, 823–831 (2002)

    Article  ADS  Google Scholar 

  26. Ghosh, S., Kaushik, R.: Exploring high-speed low-power hybrid arithmetic units at scaled supply and adaptive clock-stretching. In: Asia and South Pacific Design Automation Conference, 2008. ASPDAC 2008, pp. 635–640 (2008)

  27. Akter, R., Islam, N., Waheed, S.: Implementation of reversible logic gate in quantum dot cellular automata. Int. J. Comput. Appl. 109(1), 41–44 (2015)

    Google Scholar 

  28. Ahmad, F., Bhat, G.M., Khademolhosseini, H., Azimi, S., Angizi, S., Navi, K.: Towards single layer quantum-dot cellular automata adders based on explicit interaction of cells. J. Comput. Sci. 16, 8–15 (2016)

    Article  MathSciNet  Google Scholar 

  29. Chaudhary, A., Chen, D.Z., Hu, X.S., Whitton, K., Niemier, M., Ravichandran, R.: Eliminating wire crossings for molecular quantum-dot cellular automata implementation. In: IEEE/ACM International Conference on Computer-Aided Design, 2005. ICCAD-2005, pp. 565–571 (2005)

  30. Shin, S.-H., Jeon, J.-C., Yoo, K.-Y.: Design of wire-crossing technique based on difference of cell state in quantum-dot cellular automata. Int. J. Control Autom. 7, 153–164 (2014)

    Article  Google Scholar 

  31. Devadoss, R., Paul, K., Balakrishnan, M.: Clocking-based coplanar wire crossing scheme for QCA. In: 23rd International Conference on VLSI Design, 2010. VLSID’10, pp. 339–344 (2010)

  32. Srivastava, S., Asthana, A., Bhanja, S., Sarkar, S.: QCAPro-an error-power estimation tool for QCA circuit design. In: 2011 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2377–2380 (2011)

  33. Srivastava, S., Sarkar, S., Bhanja, S.: Estimation of upper bound of power dissipation in QCA circuits. IEEE Trans. Nanotechnol. 8, 116–127 (2009)

    Article  ADS  Google Scholar 

  34. Liu, W., Srivastava, S., Lu, L., O’Neill, M., Swartzlander, E.E.: Are QCA cryptographic circuits resistant to power analysis attack. IEEE Trans. Nanotechnol. 11, 1239–1251 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suhaib Ahmed.

Ethics declarations

Competing interests

The authors declare that there is no conflict of interest regarding the publication of this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, F., Ahmed, S., Kakkar, V. et al. Modular Design of Ultra-Efficient Reversible Full Adder-Subtractor in QCA with Power Dissipation Analysis. Int J Theor Phys 57, 2863–2880 (2018). https://doi.org/10.1007/s10773-018-3806-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-018-3806-3

Keywords

Navigation