Skip to main content
Log in

Multihop Teleportation via the Composite of Asymmetric W State and Bell State

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In this article, quantum teleportation schemes of a single qubit, two-qubit and N-qubit state are presented in a multihop communication network. All the schemes can be completed deterministicly. The shared entanglement resource between two adjacent nodes is the composition of the asymmetric W state and Bell state. It is not equivalent to the composite of GHZ state and Bell state used by Zou et al. (Phys. Lett. A 381, 76–81 2017).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Let. 70, 1895–1899 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  2. Vaidamn, L.: Teleportation of quantum states. Phys. Rev. A 49, 1473–1476 (1994)

    Article  ADS  Google Scholar 

  3. Braunstein, S.L., Kimble, H.J.: Teleportation of continuous quantum variables. Phys. Rev. Lett. 80, 869 (1998)

    Article  ADS  Google Scholar 

  4. Karlsson, A., Bournnane, M.: Quantum teleportation using three-particle entanglement. Phys. Rev. A 58, 4394–4400 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  5. Muralidharan, S., Panigrahi, P.K.: Perfect teleportation, quantum-state sharing and superdense coding through a genuinely entangled five-qubit state. Phys. Rev. A 77, 032321 (2008)

    Article  ADS  Google Scholar 

  6. Muralidharan, S., Karumanchi, S., Jain, S., Srikanth, R., Panigrahi, P.K.: 2N qubit “mirror states” for optimal quantum communication. Eur. Phys. J. D 61, 757–763 (2011)

    Article  ADS  Google Scholar 

  7. Rigolin, G.: Quantum teleportation of an arbitrary two-qubit state and its relation to multipartite entanglement. Phys. Rev. A 71, 032303 (2005)

    Article  ADS  Google Scholar 

  8. Gordon, G., Rigolin, G.: Generalized teleportation protocol. Phys. Rev. A 73, 042309 (2006)

    Article  ADS  Google Scholar 

  9. Liuzzo-Scorpo, P., Mari, A., Giovannetti, V., Adesso, G.: Optimal continuous variable quantum teleportation with limited resources. Phys. Rev. Lett. 119 (12), 120503 (2017)

    Article  ADS  Google Scholar 

  10. Bouwmeester, D., Pan, J.-W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature 390, 575–579 (1997)

    Article  ADS  Google Scholar 

  11. Olmschenk, S., Matsukevich, D.N., Maunz, P., Hayes, D., Duan, L.-M., Monroe, C.: Quantum teleportation between distant matter qubits. Science 323, 486–489 (2009)

    Article  ADS  Google Scholar 

  12. Jin, X.-M., Ren, J.-G., Yang, B., Yi, Z.-H., Zhou, F., Xu, X.-F., Wang, S.-K., Yang, D., Hu, Y.-F., Jiang, S., Yang, T., Yin, H., Chen, K., Peng, C.-Z., Pan, J.-W.: Experimental free-space quantum teleportation. Nat. Photon. 4, 376–381 (2010)

    Article  ADS  Google Scholar 

  13. Ren, J.-G., Xu, P., Yong, H.-L., et al.: Ground-to-satellite quantum teleportation. Nature 549, 7670 (2017)

    Article  Google Scholar 

  14. Kimble, H.J.: The quantum internet. Nature 453(7198), 1023–1030 (2008)

    Article  ADS  Google Scholar 

  15. Wang, K., Yu, X.-T., Lu, S.-L., et al: Quantum wireless multihop communication based on arbitrary Bell pairs and teleportation. Phys. Rev. A 89(2), 022329 (2014)

    Article  ADS  Google Scholar 

  16. Shi, L.-H., Yu, X.-T., Cai, X.-F., Gong, X.-Y., Zhang, Z.-C.: Quantum information transmission in the quantum wireless multihop network based on Werner state. Chin. Phys. B 24(5), 050308 (2015)

    Article  ADS  Google Scholar 

  17. Cai, X.-F., Yu, X.-T., Shi, L.-H., et al.: Partially entangled states bridge in quantum teleportation. Front. Phys. 9(5), 646–651 (2014)

    Article  Google Scholar 

  18. Xiong, P.-Y., Yu, X-T., Zhan, H.-T., et al.: Multiple teleportation via partially entangled GHZ state. Front. Phys. 11(4), 110303 (2016)

    Article  Google Scholar 

  19. Zou, Z.-Z., Yu, X.-T., Gong, Y.-X., Zhang, Z.-C.: Multihop teleportation of two-qubit state via the composite GHZ-Bell channel. Phys. Lett. A 381, 76–81 (2017)

    Article  ADS  Google Scholar 

  20. Agrawal, P., Pati, A.: Perfect teleportation and superdense coding with W states. Phys. Rev. A 74, 062320 (2006)

    Article  ADS  Google Scholar 

  21. Li, L.-Z., Qiu, D.-W.: The states of W-class as shared resources for perfect teleportation and superdense coding. J. Phys. A 40, 10871 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  22. Coffman, V., Kundu, J., Wootters, W.K.: Distributed entanglement. Phys. Rev. A 61, 052306 (2000)

    Article  ADS  Google Scholar 

  23. Bell, J.: On the Einstein Podolsky Rosen paradox. Physics 1(3), 195–200 (1964)

    Article  MathSciNet  Google Scholar 

  24. Gisin, N.: Bell’s inequality holds for all non-product states. Phys. Lett. A 154, 201–202 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  25. Popescu, S., Rohrlich, D.: Generic quantum nonlocality. Phys. Lett. A 166, 293–297 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  26. Rosset, D., Branciard, C., et al.: Nonlinear Bell inequalities tailored for quantum networks. Phys. Rev. Lett. 116, 010403 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  27. Gisin, N., Mei, Q., Tavakoli, A., et al.: All entangled pure quantum states violate the bilocality inequality. Phys. Rev. A 96, 020304(R) (2017)

    Article  ADS  MathSciNet  Google Scholar 

  28. Luo, M.-X.: Computationally efficient nonlinear Bell inequalities for quantum networks. Phys. Rev. Lett. 120, 140402 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  29. Hu, M.-J., Zhou, Z.-Y., Hu, X.-M., et al.: Experimental sharing of nonlocality among multiple observers with one entangled pair via optimal weak measurements. arXiv:1609.01863

  30. Espoukeh, P., Pedram, P.: Quantum correlation evolution of GHZ and W states under noisy channels using ameliorated measurement-induced disturbance. Quantum Inf. Process. 14, 303–319 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  31. Girolami, D., Paternostro, M., Adesso, G.: Faithful nonclassicality indicators and extremal quantum correlations in two-qubit states. J. Phys. A: Math. Theor. 44, 352002 (2011)

    Article  Google Scholar 

  32. Ollivier, H., Zurek, W.H.: Quantum discord: A measure of the quantumness of correlations. Phys. Rev. Lett. 88(1), 017901 (2002)

    Article  ADS  Google Scholar 

  33. Henderson, L., Vedral, V.: Classical, quantum and total correlations. J. Phys. Math. Gen. 34, 6899 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  34. Luo, S.-L.: Using measurement-induced disturbance to characterize correlations as classical or quantum. Phys. Rev. A 77, 022301 (2008)

    Article  ADS  Google Scholar 

  35. Jung, E., Hwang, M.R., JuYou, H., Kim, M.S., Yoo, S.K., Kim, H., Park, D., Son, J.W., Tamaryan, S., Cha, S.K.: Greenberger-Horne-Zeilinger versus W states: quantum teleportation through noisy channels. Phys. Rev. A 78, 012312 (2008)

    Article  ADS  Google Scholar 

  36. Ji, Q.-B., Liu, Y.-M., Yin, X.-F., Liu, X.-S., Zhang, Z.-J.: Quantum operation sharing with symmetric and asymmetric W states. Quantum Info. Process. 12, 2453–2464 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  37. Nie, Y.-Y., Li, Y.-H., Liu, J.-C., Sang, M.-H.: Quantum state sharing of an arbitrary three-qubit state by using four sets of W-class states. Opt. Commun. 284, 1457 (2011)

    Article  ADS  Google Scholar 

  38. Zheng, S.-B.: Splitting quantum information via W states. Phys. Rev. A 74, 054303 (2006)

    Article  ADS  Google Scholar 

  39. Dong, L., Xiu, X.-M., Gao, Y.-J., Chi, F.: Quantum secure direct communication using W state. Commun. Theor. Phys. 49, 1495 (2008)

    Article  ADS  Google Scholar 

  40. Liu, W.-J., Liu, C., Wang, H.-B., Liu, J.-F., Wang, F., Yuan, X.-M.: Secure quantum private comparison of equality based on asymmetric W state. Int. J. Theor. Phys. 53(6), 1804–1813 (2013)

    Article  Google Scholar 

  41. Dong, L., Wang, J.-X., Li, Q.-Y., Shen, H.-Z., Dong, H.-K., Xiu, X.-M., Gao, Y.-J., Oh, C.-H.: Nearly deterministic preparation of the perfect W state with weak cross-Kerr nonlinearities. Phys. Rev. A 93, 012308 (2016)

    Article  ADS  Google Scholar 

  42. Zhang, Z.-H., Shu, L., Mo, Z.-W.: Quantum teleportation and superdense coding through the composite W-Bell channel. Quantum Inf. Process. 12(5), 1957–1967 (2013)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank the referees for valuable comments. This work is supported by the Natural Science Foundation of China (No. 71473108), Natural Science Foundation of Jiangsu Province of China (No. BK20160487), Science and Technology Foundation of Guizhou Province (No. [2018]1019), Foundation of Jiangsu University for Talents (No. 16JDG041).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mei Sun.

Appendix

Appendix

The distribution of particles are presented in this section. In all of figures from Figs. 2 to 6, a black dot denotes a qubit. If there is a real line between two dots, it means that the two qubits are entangled. Qubits in a same rectangle belong to one communication node.

Fig. 2
figure 2

Distribution of qubits in two-hop teleportation of a single qubit

Fig. 3
figure 3

Distribution of qubits in N-hop teleportation of a single qubit

Fig. 4
figure 4

Distribution of qubits in two-hop teleportation of a two-qubit state

Fig. 5
figure 5

Distribution of qubits in N-hop teleportation of a two-qubit state

Fig. 6
figure 6

Distribution of qubits in two-hop teleportation of an arbitrary N-qubit state

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Wang, J. & Sun, M. Multihop Teleportation via the Composite of Asymmetric W State and Bell State. Int J Theor Phys 57, 3605–3620 (2018). https://doi.org/10.1007/s10773-018-3874-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-018-3874-4

Keywords

Navigation