Skip to main content
Log in

Controlled Quantum Secure Direct Communication Protocol Based on Huffman Compression Coding

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In order to improve the efficiency of quantum secure direct communication, a controlled quantum secure direct communication protocol based on Huffman compression coding is proposed in this paper. The protocol combines classical Huffman coding with quantum communication, Alice performs Huffman compression code and unitary operation on the secret messages and sends them to Bob, and then Bob obtains the corresponding secret messages through decoding operation. In this protocol, communication efficiency can be effectively improved by using Huffman compression coding and sequence generator. As a result, the longer the secret messages, the higher the communication efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Beige, A., Englert, B.G., Kurtsiefer, C., et al.: Secure communication with a publicly known key. Acta Phys. Pol. 101, 357 (2002)

    Article  ADS  Google Scholar 

  2. Bostrom, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)

    Article  ADS  Google Scholar 

  3. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A 68, 113–114 (2003)

    Google Scholar 

  4. Deng, F.G., Long, G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A. 69, 521–524 (2004)

    Article  Google Scholar 

  5. Chen, Y., Man, Z.X., Xia, Y.J.: Quantum bidirectional secure direct communication via entanglement swapping. Chin. Phys. B 24, 19 (2007)

    Google Scholar 

  6. Yuan, H., Song, J., Hu, X.Y., et al.: An efficient deterministic secure quantum communication scheme with cluster state. Int. J. Quantum. Inf. 7, 689–696 (2009)

    Article  Google Scholar 

  7. Quan, D.X., Pei, C.X., Liu, D., et al.: One-way deterministic secure quantum communication protocol based on single photons. Chin. Phys. B 59, 2493–2497 (2010)

    Google Scholar 

  8. Chang, Y., Zhang, S.B., Yan, L.L., et al.: Faithful deterministic secure quantum communication and authentication protocol based on hyperentanglement against collective noise. Chin. Phys. B 24, 189–196 (2015)

    Google Scholar 

  9. Yu, Z.B., Gong, L.H., Wen, R.H.: Novel multiparty controlled bidirectional quantum secure direct communication based on continuous-variable states. Int. J. Theor. Phys. 55, 1–13 (2015)

    Google Scholar 

  10. Naseri, M., Raji, M.A., Hantehzadeh, M.R., et al.: A scheme for secure quantum communication network with authentication using GHZ-like states and cluster states controlled teleportation. Quantum Inf. Process. 14, 4279–4295 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  11. Chang, C.H., Luo, Y.P., Yang, C.W., et al.: Intercept-and-resend attack on controlled bidirectional quantum direct communication and its improvement. Quantum Inf. Process. 14, 35158–3522 (2015)

    Article  MathSciNet  Google Scholar 

  12. Luo, Y.P., Hwang, T.: Authenticated semi-quantum direct communication protocols using Bell states. Quantum Inf. Process. 15, 947–958 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  13. Zawadzki, P.: Eavesdropping on quantum secure direct communication in quantum channels with arbitrarily low loss rate. Quantum Inf. Process. 15, 1731–1741 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  14. Liu, Z., Chen, H.: Cryptanalysis of controlled bidirectional quantum secure direct communication network using classical XOR operation and quantum entanglement. IEEE Commun. Lett. 21, 2202–2205 (2017)

    Article  Google Scholar 

  15. Mohapatra, A.K., Balakrishnan, S.: Controller-independent bidirectional quantum direct communication. Quantum Inf. Process. 16, 147 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  16. Wu, F.Z., Yang, G.J., Wang, H.B., et al.: High-capacity quantum secure direct communication with two-photon six-qubit hyperentangled states. Sci. Chin. Phys. Mech. Astron. 60, 120313 (2017)

    Article  ADS  Google Scholar 

  17. Zhou, N.R., Li, J.F., Yu, Z.B., et al.: New quantum dialogue protocol based on continuous-variable two-mode squeezed vacuum states. Quantum Inf. Process. 16, 1–16 (2017)

    Article  ADS  Google Scholar 

  18. Song, Y., Li, Y., Wang, W.: Multiparty quantum direct secret sharing of classical information with bell states and bell measurements. Int. J. Theor. Phys. 57, 1559–1571 (2018)

    Article  Google Scholar 

  19. Xie, C., Li, L., Situ, H., et al.: Semi-quantum secure direct communication scheme based on bell states. Int. J. Theor. Phys. 14, 1–7 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  20. Liu, Z., Chen, H.W.: Analysis and improvement of large payload bidirectional quantum secure direct communication without information leakage. Int. J. Theor. Phys. 57, 1–11 (2018)

    Article  MathSciNet  Google Scholar 

  21. He, Y.F., Ma, W.P.: Three-party quantum secure direct communication against collective noise. Quantum Inf. Process. 16, 252 (2017)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengwen Cao.

Additional information

The Natural Fund of Science in Shaanxi in 2018(No.2018JM6123). The Project of Graduate Independent Innovative of Northwest University of China(No. YZZ17178 and YZZ17175).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, Z., Li, Y., Peng, J. et al. Controlled Quantum Secure Direct Communication Protocol Based on Huffman Compression Coding. Int J Theor Phys 57, 3632–3642 (2018). https://doi.org/10.1007/s10773-018-3876-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-018-3876-2

Keywords

Navigation