Skip to main content
Log in

Improving the Capacity of Quantum Dense Coding Via Environment-Assisted Measurement and Quantum Measurement Reversal

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We propose a novel method to enhance the capacity of quantum dense coding under local amplitude damping noise. With the assistance of environment-assisted measurement and quantum measurement reversal, we show that the amplitude damping noise could be completely eliminated and the capacity is exactly recovered with a certain probability. Comparing with the results obtained by the method of weak measurement and quantum measurement reversal, our results show notable superiorities on improving the capacity and successful probability. The key advantage of our scheme originates from the fact that environment-assisted measurement can extract additional information from the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Nielsen, M.A., Chuang, I.L.: Quantum computation and quantum information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  2. Bennett, C.H., Wiesne, S.J.: Phys. Rev. Lett. 69, 2881–2884 (1993)

    Article  ADS  Google Scholar 

  3. Bennett, C.H., Brassard, G., Crpeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Phys. Rev. Lett. 70, 1895–1898 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  4. Mattle, K., Weinfurter, H., Kwiat, P.G., Zeilinger, A.: Phys. Rev. Lett. 76, 4656 (1996)

    Article  ADS  Google Scholar 

  5. Li, X., Pan, Q., Jing, J., Zhang, J., Xie, C., Peng, K.: Phys. Rev. Lett. 88, 047904 (2002)

    Article  ADS  Google Scholar 

  6. Yeo, Y., Chua, W.K.: Phys. Rev. Lett. 96, 060502 (2006)

    Article  ADS  Google Scholar 

  7. Horodecki, M., Piani, M.: J. Phys. A: Math. Theor. 45, 105306 (2012)

    Article  ADS  Google Scholar 

  8. Harrow, A., Hayden, P., Leung, D.: Phys. Rev. Lett. 92, 187901 (2004)

    Article  ADS  Google Scholar 

  9. Shadman, Z., Kampermann, H., Macchiavello, C., Bruß, D.: New J. Phys. 12, 073042 (2010)

    Article  ADS  Google Scholar 

  10. Breuer, H.P., Petruccione, F.: The theory of open quantum systems. Oxford University Press, Oxford (2002)

    MATH  Google Scholar 

  11. Yu, T., Eberly, J.H.: Phys. Rev. Lett. 93, 140404 (2004)

    Article  ADS  Google Scholar 

  12. Almeida, M.P., Melo, F.D., Meyll, M.H., Salles, A., Walborn, S.P., Souto Ribeiro, P.H., Davidovich, L.: Science 316, 579–582 (2007)

    Article  ADS  Google Scholar 

  13. Ban, M.: J. Opt. B: Quantum and Semiclassical Opt. 2, 786 (2000)

    Article  ADS  Google Scholar 

  14. Li, X.H., Zhao, B.K., Sheng, Y.B., Deng, F.G., Zhou, H.Y.: Int. J. Quantum Inf. 7, 1479–1489 (2009)

    Article  Google Scholar 

  15. Liu, B.H., Hu, X.M., Huang, Y.F., Li, C.F., Guo, G.C., Karlsson, A., Laine, E.M., Maniscalco, S., Macchiavello, C., Piilo, J.: EPL 114, 10005 (2016)

    Article  ADS  Google Scholar 

  16. Sun, Q.Q., Al-Amri, M., Davidovich, L., Suhail Zubairy, M.: Phys. Rev. A 82, 052323 (2010)

    Article  ADS  Google Scholar 

  17. Kim, Y.S., Lee, J.C., Kwon, O., Kim, Y.H.: Nat. Phys. 8, 117–120 (2012)

    Article  Google Scholar 

  18. Xiao, X., Li, Y.L.: Eur. Phys. J. D 67, 204 (2013)

    Article  ADS  Google Scholar 

  19. Xiao, X., Yao, Y., Xie, Y.M., Wang, X.H., Li, Y.L.: Quantum Inf. Process. 15, 3881–3891 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  20. Li, Y.L., Xiao, X.: Quantum Inf. Process. 12, 3067–3077 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  21. Xiao, X., Yao, Y., Zhong, W.J., Li, Y.L., Xie, Y.M.: Phys. Rev. A 93, 012307 (2016)

    Article  ADS  Google Scholar 

  22. Tian, M.B., Zhang, G.F.: Quantum Inf. Process. 17, 19 (2018)

    Article  ADS  Google Scholar 

  23. Zhao, X., Hedemann, S.R., Yu, T.: Phys. Rev. A 88, 022321 (2013)

    Article  ADS  Google Scholar 

  24. Wang, K., Zhao, X., Yu, T.: Phys. Rev. A 89, 042320 (2014)

    Article  ADS  Google Scholar 

  25. Wu, H.J., Jin, Z., Zhu, A.D.: Int. J. Theor. Phys. 57, 1235–1244 (2018)

    Article  Google Scholar 

  26. Xu, X.M., Cheng, L.Y., Liu, A.P., Su, S.L., Wang, H.F., Zhang, S.: Quantum Inf. Process. 14, 4147–4162 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  27. Hiroshima, T.: J. Phys. A: Math. Gen. 34, 6907–6912 (2001)

    Article  ADS  Google Scholar 

  28. Li, Y.L., Yao, Y., Xiao, X.: Laser Phys. Lett. 13, 125202 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work is supported by the Funds of the National Natural Science Foundation of China under Grant Nos. 61765007. YL Li is supported by the Program of Qingjiang Excellent Young Talents, Jiangxi University of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan-Ling Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, YL., Wei, DM. & Zu, CJ. Improving the Capacity of Quantum Dense Coding Via Environment-Assisted Measurement and Quantum Measurement Reversal. Int J Theor Phys 58, 1–9 (2019). https://doi.org/10.1007/s10773-018-3904-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-018-3904-2

Keywords

Navigation