Skip to main content
Log in

A Novel Adder Circuit Design in Quantum-Dot Cellular Automata Technology

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Quantum-dot Cell Automata (QCA) technology is a promising alternative technology for CMOS technology. In this technology, the ultra-dense and low-latency digital circuits are designed. One of the important digital circuits is Full Adder (FA). In this paper, a new and efficient multilayer QCA full adder circuit is designed and evaluated. In the designed full adder circuit, sum and carry output are designed in separated layers. Then, a novel and efficient 4-bit Ripple Carry Adder (RCA) circuit is designed based on this new FA circuit. The proposed QCA circuits are simulated using QCADesigner tool version 2.0.3. The simulation results show that the proposed 4-bit QCA RCA requires 135 QCA cells, 0.06 μm2 area and 5 clock phases. The comparison shows that the proposed QCA circuits have advantages compared to other QCA circuits in terms of area, latency, and cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Karimi, A., Rezai, A.: A design methodology to optimize the device performance in CNTFET. ECS J. Solid State Sci. Technol. 6(8), M97–M102 (2017)

    Article  Google Scholar 

  2. Zareiee, M.: A novel high performance nano-scale MOSFET by inserting Si3N4 layer in the channel. Superlattice. Microst. 88, 254–261 (2015)

    Article  ADS  Google Scholar 

  3. Zareiee, M.: Modifying buried layers in nano-MOSFET for achieving reliable electrical characteristics. ECS J. Solid State Sci. Technol. 5(10), M113–M117 (2016)

    Article  Google Scholar 

  4. Zareiee, M.: High performance Nano device with reduced Short Channel effects in high temperature applications. ECS J. Solid State Sci. Technol. 6(7), M75–M78 (2017)

    Article  Google Scholar 

  5. Zareiee, M., Mehrad, M.: A reliable Nano device with appropriate performance in high temperatures. ECS J. Solid State Sci. Technol. 6(4), M50–M54 (2017)

    Article  Google Scholar 

  6. Zareiee, M., Orouji, A.A.: Superior electrical characteristics of novel nanoscale MOSFET with embedded tunnel diode. Superlattice. Microst. 101, 57–67 (2017)

    Article  ADS  Google Scholar 

  7. Mehrad, M.: Reducing floating body and Short Channel effects in Nano scale transistor: inserted P+ region SOI-MOSFET. ECS J. Solid State Sci. Technol. 5(9), M88–M92 (2016)

    Article  Google Scholar 

  8. Mehrad, M.: Application of N+ buried layer in reducing lattice temperature of Nano-scale MOSFET. ECS J. Solid State Sci. Technol. 5(12), M158–M162 (2016)

    Article  Google Scholar 

  9. Cho, G., Kim, Y.-B., Lombardi, F.: Assessment of CNTFET based circuit performance and robustness to PVT variations. In: Circuits and Systems, 2009. MWSCAS'09. 52nd IEEE International Midwest Symposium on 2009, pp. 1106–1109. IEEE (2009)

  10. Shafizadeh, M., Rezai, A.: Improved device performance in a CNTFET using La2O3 high-κ dielectrics. J. Comput. Electron. 16(2), 221–227 (2017)

    Article  Google Scholar 

  11. Karimi, A., Rezai, A.: Improved device performance in CNTFET using genetic algorithm. ECS J. Solid State Sci. Technol. 6(1), M9–M12 (2017)

    Article  Google Scholar 

  12. Naderi, A., Tahne, B.A.: T-CNTFET with gate-drain overlap and two different gate metals: a novel structure with increased saturation current. ECS J. Solid State Sci. Technol. 5(8), M3032–M3036 (2016)

    Article  Google Scholar 

  13. Naderi, A., Ahmadmiri, S.A.: Attributes in the performance and design considerations of asymmetric drain and source regions in carbon Nanotube field effect transistors: quantum simulation study. ECS J. Solid State Sci. Technol. 5(7), M63–M68 (2016)

    Article  Google Scholar 

  14. Seminario, J.M., Derosa, P.A., Cordova, L.E., Bozard, B.H.: A molecular device operating at terahertz frequencies: theoretical simulations. IEEE Trans. Nanotechnol. 3(1), 215–218 (2004)

    Article  ADS  Google Scholar 

  15. Abu El-Seoud, A., El-Banna, M., Hakim, M.: On modelling and characterization of single electron transistor. Int. J. Electron. 94(6), 573–585 (2007)

    Article  Google Scholar 

  16. Meng, H., Wang, J., Wang, J.-P.: A spintronics full adder for magnetic CPU. IEEE electr. Dev. lett. 26(6), 360–362 (2005)

    Article  ADS  Google Scholar 

  17. Balali, M., Rezai, A., Balali, H., Rabiei, F., Emadi, S.: A novel design of 5-input majority gate in quantum-dot cellular automata technology. In: Computer Applications & Industrial Electronics (ISCAIE), 2017 IEEE Symposium on 2017, pp. 13–16. IEEE

  18. Kim, K., Wu, K., Karri, R.: Towards designing robust QCA architectures in the presence of sneak noise paths. In: Proceedings of the conference on Design, Automation and Test in Europe-Volume 2 2005, pp. 1214–1219. IEEE Computer Society (2005)

  19. Kim, K., Wu, K., Karri, R.: Quantum-dot cellular automata design guideline. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 89(6), 1607–1614 (2006)

    Article  ADS  Google Scholar 

  20. Niemier, M.T.: Designing digital systems in quantum cellular automata. University of Notre Dame (2000)

  21. Balali, M., Rezai, A., Balali, H., Rabiei, F., Emadi, S.: Towards coplanar quantum-dot cellular automata adders based on efficient three-input XOR gate. Results Phys. 7, 1389–1395 (2017)

    Article  ADS  Google Scholar 

  22. Navi, K., Farazkish, R., Sayedsalehi, S., Azghadi, M.R.: A new quantum-dot cellular automata full-adder. Microelectron. J. 41(12), 820–826 (2010)

    Article  Google Scholar 

  23. Swartzlander, E.E., Cho, H., Kong, I., Kim, S.-W.: Computer arithmetic implemented with QCA: A progress report. In: Signals, Systems and Computers (ASILOMAR), 2010 Conference Record of the Forty Fourth Asilomar Conference on 2010, pp. 1392–1398. IEEE (2010)

  24. Liu, W., Lu, L., O'Neill, M., Swartzlander, E.E.: Design rules for quantum-dot cellular automata. In: Circuits and Systems (ISCAS), 2011 IEEE International Symposium on 2011, pp. 2361–2364. IEEE (2011)

  25. Sabbaghi-Nadooshan, R., Kianpour, M.: A novel QCA implementation of MUX-based universal shift register. J. Comput. Electron. 13(1), 198–210 (2014)

    Article  MATH  Google Scholar 

  26. Mustafa, M., Beigh, M.: Novel Linear Feedback Shift Register Design in Quantum-Dot Cellular Automata. (2014)

    Google Scholar 

  27. Perri, S., Corsonello, P., Cocorullo, G.: Design of efficient binary comparators in quantum-dot cellular automata. IEEE Trans. Nanotechnol. 13(2), 192–202 (2014)

    Article  ADS  Google Scholar 

  28. Hayati, M., Rezaei, A.: Design and optimization of full comparator based on quantum-dot cellular automata. ETRI J. 34(2), 284–287 (2012)

    Article  Google Scholar 

  29. Rashidi, H., Rezai, A., Soltany, S.: High-performance multiplexer architecture for quantum-dot cellular automata. J. Comput. Electron. 15(3), 968–981 (2016)

    Article  Google Scholar 

  30. Rashidi, H., Rezai, A.: Design of Novel Efficient Multiplexer Architecture for quantum-dot cellular automata. J. Nano Electron. Phys. 9(1), 1012–1011 (2017)

    Article  Google Scholar 

  31. Waje, M.G., Dakhole, P.: Analysis of various approaches used for the implementation of QCA based full adder circuit. In: Electrical, Electronics, and Optimization Techniques (ICEEOT), International Conference on 2016, pp. 2424–2428. IEEE (2016)

  32. Singh, G.: Design and performance analysis of a new efficient coplanar quantum-dot cellular automata adder. Indian Journal of Pure & Applied Physics (IJPAP). 55(2), 97–103 (2017)

    ADS  Google Scholar 

  33. Abedi, D., Jaberipur, G., Sangsefidi, M.: Coplanar full adder in quantum-dot cellular automata via clock-zone-based crossover. IEEE Trans. Nanotechnol. 14(3), 497–504 (2015)

    Article  ADS  Google Scholar 

  34. Ramesh, B., Rani, M.A.: Design of an Optimal Decimal Adder in quantum dot cellular automata. Int. J. Nanotechnol. Appl. 11(2), 197–211 (2017)

    Google Scholar 

  35. Mokhtari, D., Rezai, A., Rashidi, H., Rabiei, F., Emadi, S., Karimi, A.: Design of novel efficient full adder architecture for quantum-dot cellular automata technology. Facta Univ. Ser. Electron. Energ. 31(2), 279–285 (2018)

    Article  Google Scholar 

  36. Rashidi, H., Rezai, A.: High-performance full adder architecture in quantum-dot cellular automata. J. Eng. 2017(7), 394–402 (2017)

  37. Sen, B., Sahu, Y., Mukherjee, R., Nath, R.K., Sikdar, B.K.: On the reliability of majority logic structure in quantum-dot cellular automata. Microelectron. J. 47, 7–18 (2016)

    Article  Google Scholar 

  38. Kianpour, M., Sabbaghi-Nadooshan, R., Navi, K.: A novel design of 8-bit adder/subtractor by quantum-dot cellular automata. J. Comput. Syst. Sci. 80(7), 1404–1414 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  39. Mostafaee, A., Rezaei, A., Karkhanehchi, M.M., Jamshidi, S.M.: Design of QCA full adders without wire crossing. Boson J. Modern Phys. 2(2), 90–96 (2015)

    Google Scholar 

  40. Sonare, N., Meena, S.: A robust design of coplanar full adder and 4-bit Ripple Carry adder using qunatum-dot cellular automata. In: Recent Trends in Electronics, Information & Communication Technology (RTEICT), IEEE International Conference on 2016, pp. 1860–1863. IEEE (2016)

  41. Pudi, V., Sridharan, K.: Low complexity design of ripple carry and Brent–kung adders in QCA. IEEE Trans. Nanotechnol. 11(1), 105–119 (2012)

    Article  ADS  Google Scholar 

  42. Mohammadi, M., Mohammadi, M., Gorgin, S.: An efficient design of full adder in quantum-dot cellular automata (QCA) technology. Microelectron. J. 50, 35–43 (2016)

    Article  Google Scholar 

  43. Bishnoi, B., Giridhar, M., Ghosh, B., Nagaraju, M.: Ripple carry adder using five input majority gates. In: Electron Devices and Solid State Circuit (EDSSC), 2012 IEEE International Conference on 2012, pp. 1–4. IEEE (2012)

  44. De, D., Das, J.C.: Design of novel carry save adder using quantum dot-cellular automata. J. Comput. Sci. 22, 54–68 (2017)

    Article  Google Scholar 

  45. Hashemi, S., Navi, K.: A novel robust QCA full-adder. Proc. Mater. Sci. 11, 376–380 (2015)

    Article  Google Scholar 

  46. Jaiswal, R., Sasamal, T.N.: Efficient design of full adder and subtractor using 5-input majority gate in QCA. In: Contemporary Computing (IC3), 2017 Tenth International Conference on 2017, pp. 1–6. IEEE (2017)

  47. Kassa, S.R., Nagaria, R.: A novel design of quantum dot cellular automata 5-input majority gate with some physical proofs. J. Comput. Electron. 15(1), 324–334 (2016)

    Article  Google Scholar 

  48. Labrado, C., Thapliyal, H.: Design of adder and subtractor circuits in majority logic-based field-coupled QCA nanocomputing. Electron. Lett. 52(6), 464–466 (2016)

    Article  Google Scholar 

  49. Sasamal, T.N., Singh, A.K., Mohan, A.: An optimal design of full adder based on 5-input majority gate in coplanar quantum-dot cellular automata. Optik-Int. J. Light Electron Opt. 127(20), 8576–8591 (2016)

    Article  Google Scholar 

  50. Sasamal, T.N., Singh, A.K., Mohan, A.: An efficient design of quantum-dot cellular automata based 5-input majority gate with power analysis. Microprocess. Microsyst. (2018)

  51. Hashemi, S., Tehrani, M., Navi, K.: An efficient quantum-dot cellular automata full-adder. Sci. Res. Essays. 7(2), 177–189 (2012)

    Google Scholar 

  52. Navi, K., Sayedsalehi, S., Farazkish, R., Azghadi, M.R.: Five-input majority gate, a new device for quantum-dot cellular automata. J. Comput. Theor. Nanosci. 7(8), 1546–1553 (2010)

    Article  Google Scholar 

  53. Roohi, A., Khademolhosseini, H., Sayedsalehi, S., Navi, K.: A symmetric quantum-dot cellular automata design for 5-input majority gate. J. Comput. Electron. 13(3), 701–708 (2014)

    Article  Google Scholar 

  54. Sen, B., Rajoria, A., Sikdar, B.K.: Design of efficient full adder in quantum-dot cellular automata. Sci. World J. 2013, 250802 (2013)

    Article  Google Scholar 

  55. Seyedi, S., Navimipour, N.J.: An optimized design of full adder based on nanoscale quantum-dot cellular automata. Optik-Int. J. Light Electron Opt. 158, 243–256 (2018)

  56. Ahmad, F., Bhat, G.M., Khademolhosseini, H., Azimi, S., Angizi, S., Navi, K.: Towards single layer quantum-dot cellular automata adders based on explicit interaction of cells. J. Comput. Sci. 16, 8–15 (2016)

    Article  MathSciNet  Google Scholar 

  57. Goswami, M., Mohit, K., Sen, B.: Cost effective realization of XOR logic in QCA. In: Embedded Computing and System Design (ISED), 2017 7th International Symposium on 2017, pp. 1–5. IEEE (2017)

  58. Balali, M., Rezai, A.: Design of low-complexity and high-speed coplanar four-bit ripple carry adder in QCA technology. Int. J. Theor. Phys. 57(7), 1948–1960 (2018)

  59. Safoev, N., Jeon, J.-C.: Full adder based on quantum-dot cellular automata. In proc. Manila Int. Conf. Trends Eng. Technol. (MTET-17), 83–86 (2017)

  60. Safoev, N., Jeon, J.-C.: Compact RCA based on multilayer quantum-dot cellular automata. In: Information Systems Design and Intelligent Applications. pp. 515–524. Springer (2018)

  61. Walus, K., Dysart, T.J., Jullien, G.A., Budiman, R.A.: QCADesigner: a rapid design and simulation tool for quantum-dot cellular automata. IEEE Trans. Nanotechnol. 3(1), 26–31 (2004)

    Article  ADS  Google Scholar 

  62. Lent, C.S., Tougaw, P.D., Porod, W., Bernstein, G.H.: Quantum cellular automata. Nanotechnology. 4(1), 49 (1993)

    Article  ADS  Google Scholar 

  63. Niknezhad Divshali, M., Rezai, A., Karimi, A.: Towards multilayer QCA SISO shift register based on efficient D-FF circuits. Int. J. Theor. Phys. 57(11), 3326–3339 (2018)

  64. Lent, C.S., Tougaw, P.D.: A device architecture for computing with quantum dots. Proc. IEEE. 85(4), 541–557 (1997)

    Article  Google Scholar 

  65. Pudi, V., Sridharan, K.: Efficient design of a hybrid adder in quantum-dot cellular automata. IEEE trans. Very Large Scale Integ. (VLSI) Syst. 19(9), 1535–1548 (2011)

    Article  Google Scholar 

  66. Hanninen, I., Takala, J.: Robust adders based on quantum-dot cellular automata. In: Application-specific Systems, Architectures and Processors, 2007. ASAP. IEEE International Conf. on 2007, pp. 391–396. IEEE (2017)

  67. Roohi, A., DeMara, R.F., Khoshavi, N.: Design and evaluation of an ultra-area-efficient fault-tolerant QCA full adder. Microelectron. J. 46(6), 531–542 (2015)

    Article  Google Scholar 

  68. Arani, I.E., Rezai, A.: Novel circuit design of serial–parallel multiplier in quantum-dot cellular automata technology. J. Comput. Electron. 1–9 (2018)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdalhossein Rezai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adelnia, Y., Rezai, A. A Novel Adder Circuit Design in Quantum-Dot Cellular Automata Technology. Int J Theor Phys 58, 184–200 (2019). https://doi.org/10.1007/s10773-018-3922-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-018-3922-0

Keywords

Navigation