Skip to main content
Log in

Leggett-Garg Inequality and Quantumness Under the Influence of Random Telegraph Noise

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The violation of the Leggett-Garg inequality and the quantum witness of a two-level system are investigated under the influence of stochastic dephasing which is described by a non-stationary and unbalanced random telegraph noise. An extended version of the characteristic function of the noise is derived by making use of the Lie algebra method. It is found how the maximum violation time of the Leggett-Garg inequality depends on the ratio of dephasing time of the two-level system and correlation time of the noise. It is also shown that to observe the violation, unsharpness of the measurement must be smaller as the correlation time of the stochastic process is shorter. Furthermore decay of the quantum witness of the two-level system is investigated. It is shown that the quantum witness is equivalent to fidelity difference in the quantum teleportation that uses two different entanglement resources under the influence of the common noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wheeler, J.A., Zurek, W.H. (eds.): Quantum Theory and Measurement. Princeton University Press, Princeton (1983)

  2. Bell, J.S.: Speakable and Unspeakable in Quantum Mechanics. Cambridge University Press, Cambridge (1987)

    MATH  Google Scholar 

  3. Peres, A.: Quantum Theory: Concepts and Methods. Kluwer, New York (1993)

    MATH  Google Scholar 

  4. Aharonov, Y., Rohrlich, D.: Quantum Paradoxes: Quantum Theory for the Perplexed. Wiley–VCH, Weinheim (2005)

    Book  MATH  Google Scholar 

  5. Streltsov, A., Adesso, G., Plenio, M.B.: Quantum coherence as a resource. Rev. Mod. Phys. 89, 041003 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  6. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Brunner, N., Cavalcanti, D., Pironio, S., Scarani, V., Wehner, S.: Bell nonlocality. Rev. Mod. Phys. 86, 419 (2014)

    Article  ADS  Google Scholar 

  8. Einstein, A., Podolski, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935)

    Article  ADS  MATH  Google Scholar 

  9. Reid, M.D., Drummond, P.D., Bowen, W.P., Cavalcanti, E.G., Lam, K.P., Bachor, H.A., Andersen, U.L., Leuchs, G.: The Einstein-Podolsky-Rosen paradox: From concepts to applications. Rev. Mod. Phys. 81, 1727 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Nielsen, M.A., Chuang, I.L.: Quantum Communication and Quantum Information. Cambridge University Press, Cambridge (1987)

    Google Scholar 

  11. van Kampen, N.G.: Stochastic Processes in Physics and Chemistry. Elsevier, Amsterdam (1981)

    MATH  Google Scholar 

  12. Kubo, R., Toda, M., Hashitsume, N.: Statistical Physics II. Springer, Berlin (1991)

    Book  MATH  Google Scholar 

  13. Weiss, U.: Quantum Dissipative Systems. World Scientific, Singapore (1993)

    Book  MATH  Google Scholar 

  14. Breuer, H.P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2006)

    MATH  Google Scholar 

  15. Clauser, J.F., Horne, M.A., Shimony, A., Holt, R.A.: Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880 (1969)

    Article  ADS  MATH  Google Scholar 

  16. Leggett, A.J., Garg, A.: Quantum mechanics versus macroscopic realism: is the flux there when nobody looks? Phys. Rev. Lett. 54, 857 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  17. Leggett, A.J.: Realism and the physical world. Rep. Prog. Phys. 71, 022001 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  18. Emary, C., Lambert, N., Nori, F.: Leggett-Garg inequalities. Rep. Prog. Phys. 77, 016001 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  19. Li, C.M., Lambert, N., Chen, Y.N., Chen, G.Y., Nori, F.: Witnessing quantum coherence: from solid-state to biological systems. Sci. Rep. 2, 885 (2012)

    Article  Google Scholar 

  20. Schild, G., Emary, C.: Maximum violations of the quantum-witness equality. Phys. Rev. A 92, 032101 (2015)

    Article  ADS  Google Scholar 

  21. Clemente, L.: Kofler: Necessary and sufficient conditions for macroscopic realism from quantum mechanics. Phys. Rev. 91, 062103 (2015)

    Article  MathSciNet  Google Scholar 

  22. Wang, K., Knee, G.C., Zhan, X., Bian, Z., Li, J., Xue, P.: Optimal experimental demonstration of error-tolerant quantum witnesses. Phys. Rev. 95, 032122 (2017)

    Article  ADS  Google Scholar 

  23. Smirne, A., Egloff, D., Diaz, M.G., Plenio, M.B., Huelga, S.F.: Coherence and non-classicality of quantum Markov processes. Quant. .Sci. Technol. 4, 01LT01 (2019)

    Article  Google Scholar 

  24. Lobejko, M., Luczka, J., Dajka, J.: Leggett-Garg inequality for qubits coupled to thermal environment. Phys. Rev. A 91, 042113 (2015)

    Article  ADS  Google Scholar 

  25. Friedenberger, A., Lutz, E.: Assessing the quantumness of a damped two-level system. Phys. Rev. A 95, 022101 (2017)

    Article  ADS  Google Scholar 

  26. Bojer, M., Friedenberger, A., Lutz, E.: Quantum witness of a damped qubit with generalized measurements. J. Phys. Commun. (2018). https://doi.org/10.1088/2399-6528/ab2209

  27. Goan, H., Chen, P., Jian, C.: Non-markovian finite-temperature two-time correlation functions of system operators: Beyond the quantum regression theorem. J. Chem. Phys. 134, 124112 (2011)

    Article  ADS  Google Scholar 

  28. Ivanovand, A., Breuer, H.P.: Extension of the Nakajima-Zwanzig approach to multitime correlation functions of open systems. Phys. Rev. A 92, 032113 (2015)

    Article  ADS  Google Scholar 

  29. Ban, M.: Double-time correlation functions of two quantum operations in open systems. Phys. Rev. A 96, 042111 (2017). ibid. 97, 069901(E)(2018)

    Article  ADS  Google Scholar 

  30. Ban, M., Kitajima, S., Shibata, F.: Two-time correlation function of an open quantum system in contact with a Gaussian reservoir. Phys. Rev. A 97, 052101 (2018)

    Article  ADS  Google Scholar 

  31. Ban, M., Kitajima, S., Arimitsu, T., Shibata, F.: Linear response theory for open systems: Quantum master equation approach. Phys. Rev. A 95, 022126 (2017)

    Article  ADS  Google Scholar 

  32. Ban, M., Kitajima, S., Maruyama, K., Shibata, F.: Quantum mechanical model for two-state jump Markovian process. Phys. Lett. A 372, 351 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Daniotti, S., Benedetti, C., Paris, M.G.A.: Qubit systems subject to unbalanced random telegraph noise: quantum correlations, non-Karkovianity and teleportation. Eur. Phys. J. D 72, 208 (2018)

    Article  ADS  Google Scholar 

  34. Goychuk, I., Hänggi, P.: Quantum two-state dynamics driven by stationary non-Markovian discrete noise: Exact results. Chem. Phys. 324, 160 (2006)

    Article  Google Scholar 

  35. Ban, M., Kitajima, S., Shibata, F.: Decoherence of quantum information of qubits by stochastic dephasing. Phys. Lett. A 349, 415 (2006)

    Article  ADS  MATH  Google Scholar 

  36. Abel, B., Marquardt, F.: Decoherence by quantum telegraph noise: a numerical evaluation. Phys. Rev. A 78, 201302 (2008)

    ADS  Google Scholar 

  37. Wold, H.J., Brox, H., Galperin, Y.M., Bergli, J.: Decoherence of a qubit due to either a quantum fluctuator, or classical telegraph noise. Phys. Rev. B 86, 205404 (2012)

    Article  ADS  Google Scholar 

  38. Benedetti, C., Paris, M.G.A.: Effective dephasing for a qubit interacting with a transverse classical field. Int. J. Quant. Inf. 12, 1461004 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  39. Benedetti, C., Paris, M.G.A., Maniscalco, S.: Non-markovianity of colored noisy channels. Phys. Rev. A 89, 012114 (2014)

    Article  ADS  Google Scholar 

  40. Benedetti, C., Buscemi, F., Bordone, P., Paris, M.G.A.: Quantum probes for the spectral properties of a classical environment. Phys. Rev. A 89, 032114 (2014)

    Article  ADS  Google Scholar 

  41. Trapani, J., Bina, M., Maniscalco, S., Paris, M.G.A.: Collapse and revival of quantum coherence for a harmonic oscillator interacting with a classical fluctuating environment. Phys. Rev. 91, 022113 (2015)

    Article  ADS  Google Scholar 

  42. Trapani, J., Paris, M.G.A.: Nondivisibility versus backflow of information in understanding revivals of quantum correlations for continuous-variable systems interacting with fluctuating environments. Phys. Rev. A 93, 042119 (2016)

    Article  ADS  Google Scholar 

  43. Cai, X., Zheng, Y.: Decoherence induced by non-Markovian noise in a nonequilibrium environment. Phys. Rev. A 94, 042110 (2016)

    Article  ADS  Google Scholar 

  44. Yu, T., Eberly, J.H.: Sudden death of entanglement: Classical noise effects. Opt. Commun. 264, 393 (2006)

  45. Ban, M., Shibata, F.: Correlated and collective stochastic dephasing of qubit entanglement. Phys. Lett. A 354, 35 (2006)

    Article  ADS  Google Scholar 

  46. Ma, X.S., Wang, A.M.: Disentanglement of 3-qubit states with stochastic dephasing. Opt. Commun. 270, 465 (2007)

    Article  ADS  Google Scholar 

  47. Ma, X.S., Wang, A.M.: The effect of stochastic dephasing on the entanglement and coherence of qutrits. Physica A 386, 590 (2007)

    Article  ADS  Google Scholar 

  48. Corn, B., Yu, T.: Modulated entanglement evolution via correlated noises. Quant. Inf. Process. 8, 565 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  49. Altintas, F., Eryigit, R.: Quantum correlations in non-Markovian environments. Phys. Lett. A 374, 4283 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. Zhou, D., Lang, A., Joynt, R.: Disentanglement and decoherence from classical non-Markovian noise: random telegraph noise. Quant. Inf. Process. 9, 727 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  51. Yu, T., Eberly, J.H.: Entanglement evolution in a non-Markovian environment. Opt. Commun. 283, 676 (2010)

    Article  ADS  Google Scholar 

  52. Li, J., Liang, J.Q.: Quantum and classical correlations in a classical dephasing environment. Phys. Lett. A 375, 1496 (2011)

    Article  ADS  MATH  Google Scholar 

  53. Karpat, G., Gedik, Z.: Correlation dynamics of qubit-qutrit systems in a classical dephasing environment. Phys. Lett. A 375, 4166 (2011)

    Article  ADS  MATH  Google Scholar 

  54. Benedetti, C., Buscemi, F., Bordone, P., Paris, M.G.A.: Effects of classical environmental noise on entanglement and quantum discord dynamics. Int. J. Quant. Inf. 10, 1241005 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  55. D’Arrigo, A., Franco, R., Benenti, G., Paladino, E., Falci, G.: Hidden entanglement in the presence of random telegraph dephasing noise. Phys. Scr. T153, 014014 (2013)

    Article  ADS  Google Scholar 

  56. Buscemi, F., Bordone, P.: Time evolution of tripartite quantum discord and entanglement under local and nonlocal random telegraph noise. Phys. Rev. A 87, 042310 (2013)

    Article  ADS  Google Scholar 

  57. Benedetti, C., Buscemi, F., Bordone, P., Paris, M.G.A.: Dynamics of quantum correlations in colored-noise environments. Phys. Rev. 87, 87, 052328 (2013)

    Google Scholar 

  58. Buscemi, F., Bordone, P.: Time evolution of tripartite quantum discord and entanglement under local and nonlocal random telegraph noise. Phys. Rev. 87, 042310 (2013)

    Article  ADS  Google Scholar 

  59. Rossi, M.A.C., Benedetti, C., Paris, M.G.A.: Engineering decoherence for two-qubit systems interacting with a classical environment. Int. J. Quant. Inf. 12, 1560003 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  60. Kenfack, L.T., Tchoffoa, M., Faia, L.C., Fouokenga, G.C.: Decoherence and tripartite entanglement dynamics in the presence of Gaussian and non-Gaussian classical noise. Physica B 511, 123 (2017)

    Article  ADS  Google Scholar 

  61. Kenfack, L.T., Tchoffo, M., Fouokeng, G.C., Fai, L.C.: Dynamical evolution of entanglement of a three-qubit system driven by a classical environmental colored noise. Quant. Inf. Process. 17, 17 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  62. Wilcox, R.M.: Exponential operators and parameter differentiation in quantum physics. J. Math. Phys. 4, 962 (1967)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  63. Ban, M.: Decomposition formulas for su(1, 1) and su(2) Lie algebras and their applications in quantum optics. J. Opt. Soc. Am. B 10, 1347 (1993)

    Article  ADS  Google Scholar 

  64. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  65. Barnett, S.M.: Quantum Information. Oxford University Press, Oxford (2009)

    MATH  Google Scholar 

  66. Brun, T.A.: A simple model of quantum trajectories. Am. J. Phys. 70, 719 (2002)

    Article  ADS  Google Scholar 

  67. Fuchs, C.A., Jacobs, K.: Information-tradeoff relations for finite-strength quantum measurements. Phys. Rev. A 63, 062305 (2001)

    Article  ADS  Google Scholar 

  68. Saha, D., Mal, S., Panigrahi, P.K., Home, D.: Wigner’s form of the Leggett-Garg inequality, the no-signaling-in-time condition, and unsharp measurements. Phys. Rev. A 91, 032117 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  69. Feller, W.: An Introduction to Probability Theory and its Applications. Wiley, New York (1968)

    MATH  Google Scholar 

  70. Ban, M., Kitajima, S., Shibata, F.: Relaxation process of quantum system: Stochastic Liouville equation and initial correlation. Phys. Rev. A 82, 022111 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masashi Ban.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ban, M. Leggett-Garg Inequality and Quantumness Under the Influence of Random Telegraph Noise. Int J Theor Phys 58, 2893–2909 (2019). https://doi.org/10.1007/s10773-019-04172-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-019-04172-x

Keywords

Navigation