Skip to main content
Log in

Two Semi-Quantum Direct Communication Protocols with Mutual Authentication Based on Bell States

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In this paper, we proposed two semi-quantum direct communication protocols based on Bell states. By pre-sharing two secret keys between two communicants, Alice with the advanced quantum ability can transmit secret messages to the classical Bob who can only perform the limited classical operations. At the same time, both sides of the communication can comfirm the legitimacy of each other’s identity. Security and qubit efficency analysis have been given. The analysis results show that the two protocols can resistant to several well-known attacks and their qubit efficency is higher than some current protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bennett C.H., Brassard, G.: Public key distribution and coin tossing. In: Proceedings of the IEEE international conference on computers, systems and signal processing, Bangalore, pp. 175–179. IEEE, New York (1984)

  2. Hillery, M., Buoek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A. 59, 1829 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Xiao, L., Long, G.L., Deng, F.G., Pan, J.W.: Efficient multiparty quantum-secret-sharing schemes. Phys. Rev. A. 69, 052307 (2004)

    Article  ADS  Google Scholar 

  4. Han, L.F., Liu, Y.M., Shi, S.H., Zhang, Z.J.: Improving the security of a quantum secret sharing protocol between multiparty and multiparty without entanglement. Phys. Lett. A. 361, 24 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Deng, F.G., et al.: Efficient high-capacity quantum secret sharing with two-photon entanglement. Phys. Lett. A. 372, 1957 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Han, L.F., et al.: Multiparty quantum secret sharing of secure direct communication using single photons. Opt. Commun. 281, 2690 (2008)

    Article  ADS  Google Scholar 

  7. Li, X.H., et al.: Efficient symmetric multiparty quantum state sharing of an arbitrary m-qubit state. J. Phys. B. 39, 1975 (2006)

    Article  ADS  Google Scholar 

  8. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Man, Z.X., Xia, Y.J., An, N.B.: Genuine multiqubit entanglement and controlled teleportation. Phys. Rev. A. 75, 052306 (2007)

    Article  ADS  Google Scholar 

  10. Han, L.F., et al.: Communications in Theoretical Physics Revisiting Probabilistic Teleportation Scheme for atomic state via cavity QED. Commun. Theor. Phys. 46, 217 (2006)

    Article  ADS  Google Scholar 

  11. Deng, F.G., et al.: Symmetric multiparty-controlled teleportation of an arbitrary two-particle entanglement. Phys. Rev. A. 72, 022338 (2005)

    Article  ADS  Google Scholar 

  12. Huelga, S.F., Plenio, M.B., Vaccaro, J.A.: Remote control of restricted sets of operations: teleportation of angles. Phys. Rev. A. 65, 042316 (2002)

    Article  ADS  Google Scholar 

  13. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A. 65, 032302 (2002)

    Article  ADS  Google Scholar 

  14. Bostrom, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)

    Article  ADS  Google Scholar 

  15. Long, G.L., et al.: Quantum secure direct communication and deterministic secure quantum communication. Front Phys. China. 2, 251 (2002)

    Article  ADS  Google Scholar 

  16. Liu, D., Chen, J.L., Jiang, W.: High-capacity quantum secure direct communication with single photons in both polarization and spatial-mode degrees of freedom. Int. J. Theor. Phys. 51, 2923 (2012)

    Article  MATH  Google Scholar 

  17. Chang, Y., et al.: Quantum broadcast communication and authentication protocol with a quantum one-time pad. Chin. Phys. B. 23, 010305 (2014)

    Article  ADS  Google Scholar 

  18. Li, X.H., et al.: Quantum secure direct communication with quantum encryption based on pure entangled states. Chin. Phys. 16, 2149 (2007)

    Article  ADS  Google Scholar 

  19. Gu, B., et al.: Robust quantum secure direct communication with a quantum one-time pad over a collective-noise channel. Sci. China Phys. Mech. Astron. 54, 942 (2011)

    Article  ADS  Google Scholar 

  20. Wang, C., et al.: Quantum secure direct communication with high-dimension quantum superdense coding. Phys. Rev. A. 71, 044305 (2005)

    Article  ADS  Google Scholar 

  21. Boyer, M., Kenigsberg, D., Mor, T.: Quantum key distribution with classical bob. Phys. Rev. Lett. 99(14), 140501 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Boyer, M., Gelles, R., Kenigsberg, D., et al.: Semiquantum key distribution. Phys. Rev. A. 79, 032341 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Li, Q., Chan, W.H., Long, D.Y.: Semiquantum secret sharing using entangled states. Phys. Rev. A. 82(2), 022303 (2010)

    Article  ADS  Google Scholar 

  24. Li, L.Z., Qiu, D.W., Mateus, P.: Quantum secret sharing with classical bobs. J. Phys. A Math. Theor. 46, 045304 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Lin, J., Yang, C.W., Tsai, C.W., Hwang, T.: Intercept-resend attacks on semi-quantum secret sharing and the improvements. Int. J. Theor. Phys. 52, 156–162 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Zou, X.F., Qiu, D.W.: Three-Step semiquantum secure direct communication protocol. Science China Physics, Mechanics Astronomy (2014)

  27. Yang, C.W., Hwang, T., Lin, T.H.: Modification attack on QSDC with authentication and the improvement. Int. J. Theor. Phys. 52(7), 2230–2234 (2013)

    Article  MathSciNet  Google Scholar 

  28. Yu, K.F., Yang, C.W., Liao, C.H., Hwang, T.: Authenticated semi-quantum key distribution protocol using bell states. Quantum Inf. Process. 13(6), 1457–1465 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Luo, Y.P., Hwang, T.: Authenticated semi-quantum direct communication protocols using bell states. Quantum Inf. Process. 15, 947–958 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Meslouhi, A., Hassouni, Y.: Cryptanalysis on authenticated semi-quantum key distribution protocol using bell states. Quantum Inf. Process. 16(18), (2017)

  31. Li, Y.-B., Qin, S.-J., Yuan, Z., Huang, W., Sun, Y.: Quantum private comparison against decoherence noise. Quantum Inf. Process. 12(6), 2191–2205 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Li, Y.-B., Wang, T.-Y., Chen, H.-Y., Li, M.-D., Yang, Y.-T.: Fault-tolerate quantum private comparison based on GHZ states and ECC. Int. J. Theor. Phys. 52(8), 2818–2825 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  33. Li, Y.-B., Wen, Q.-Y., Qin, S.-J., Guo, F.-Z., Sun, Y.: Practical quantum all-or-nothing oblivious transfer protocol. Quantum Inf. Process. 13(1), 131–139 (2014)

    Article  ADS  Google Scholar 

  34. Cai, Q.Y.: Eavesdropping on the two-way quantum communication protocols with invisible photons. Phys. Lett. A. 351, 23 (2006)

    Article  ADS  MATH  Google Scholar 

  35. Deng, F.G., Li, X.H., Zhou, H.Y., et al.: Erratum: improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys. Rev. A. 73, 049901 (2006)

    Article  ADS  Google Scholar 

  36. Yang, Y.G., Sun, S.J., Zhao, Q.Q.: Trojan-horse attacks on quantum key distribution with classical bob. Quantum Inf. Process. 14, 681 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Cabello, A.: Quantum key distribution in the Holevo limit. Phys. Rev. Lett. 85, 5635 (2000)

    Article  ADS  Google Scholar 

  38. Shukla, C., Thapliyal, K., Pathak, A., et al.: Asymmetric quantum dialogue in noisy environment. Quantum Inf. Process. 16, 295 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We are very grateful to the reviewers and the editors for their invaluable comments and detailed suggestions that helped to improve the quality of the present paper.

This work is supported by the National Natural Science Foundation of China (Grant Nos.61572086, 61402058), the Application Foundation Project of Sichuan Province of China (Grant No. 2017JY0168), the National Key Research and Development Program (No. 2017YFB0802302) , Sichuan innovation team of quantum security communication (No.17TD0009), Sichuan academic and technical leaders training funding support projects(No. 2016120080102643)the Fund for Middle and Young Academic Leaders of CUIT (Grant No. J201511).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shibin Zhang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tao, Z., Chang, Y., Zhang, S. et al. Two Semi-Quantum Direct Communication Protocols with Mutual Authentication Based on Bell States. Int J Theor Phys 58, 2986–2993 (2019). https://doi.org/10.1007/s10773-019-04178-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-019-04178-5

Keywords

Navigation