Skip to main content
Log in

Semi-Quantum Key Agreement and Private Comparison Protocols Using Bell States

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Semi-quantum protocol uses fewer resources and more flexible, which can still guarantee the unconditional safety. Based on Bell states, this paper first presents a semi-quantum key agreement protocol which allows two classical parties (Alice and Bob) to negotiate a shared secret key with the help of a quantum party (server). Classical parties only can perform reflection operation and measurement the qubit in the classical basis {|0〉, |1〉} in the protocol. During the protocol execution, Alice and Bob equally contribute in determining the final key and no one can manipulate and know the key prior to the other one. The security of the proposed protocol has been discussed, which analysis results show that the proposed protocol not only guarantees the security of the shared secret key but also assures the fairness property. We also analyze the efficiency of the proposed protocol. In addition, a semi-quantum private comparison protocol is proposed based on the key agreement protocol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bennett, C. H. and Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, India, 175–179 (1984)

  2. Pathak, A.: Elements of Quantum Computation and Quantum Communication. CRC Press, Boca Raton (2013)

    MATH  Google Scholar 

  3. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–663 (1991)

    ADS  MathSciNet  MATH  Google Scholar 

  4. Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121–3124 (1992)

    ADS  MathSciNet  MATH  Google Scholar 

  5. Wang, T.Y., Wen, Q.Y., Chen, X.B.: Cryptanalysis and improvement of a multi-user quantum key distribution protocol. Opt. Commun. 283(24), 5261–5263 (2010)

    ADS  Google Scholar 

  6. Salas, P.J.: Security of plug-and-play QKD arrangements with finite resources. Quantum Inf. Comput. 13(9–10), 861–879 (2013)

    Google Scholar 

  7. Grosshans, F., Van Assche, G., Wenger, J., Brouri, R., Cerf, N.J., Grangier, P.: Quantum key distribution using gaussian-modulated coherent states. Nature. 421, 238–241 (2003)

    ADS  Google Scholar 

  8. Lo, H.K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108, 130503 (2012)

    ADS  Google Scholar 

  9. Xu, G., Chen, X.B., Dou, Z., Yang, Y.X., Li, Z.: A novel protocol for multiparty quantum key management. Quantum Inf. Process. 14(8), 2959–2980 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  10. Sun, Z., Zhang, C., Wang, B., Li, Q., Long, D.: Improvements on “multiparty quantum key agreement with single particles”. Quantum Inf. Process. 12, 3411–3420 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  11. Zhou, N., Zeng, G., Xiong, J.: Quantum key agreement protocol. Electron. Lett. 40, 1149–1150 (2004)

    Google Scholar 

  12. Liu, S.L., Zheng, D., Cheng, K.F.: Analysis of information leakage in quantum key agreement. J. Shanghai Jiaotong Univ. (Science). 11, 219–223 (2006)

    MATH  Google Scholar 

  13. Tsai, C., Hwang, T.: On Quantum Key Agreement Protocol. Technical Report, C-S-I-E, NCKU, Taiwan, ROC (2009)

  14. Chong, S.K., Hwang, T.: Quantum key agreement protocol based on BB84. Opt. Commun. 283, 1192–1195 (2010)

    ADS  Google Scholar 

  15. He, Y.F., Ma, W.P.: Two-party quantum key agreement with five-particle entangled states. Int. J. Quantum Inf. 15(03), 1750018 (2017)

    MathSciNet  MATH  Google Scholar 

  16. He, Y.F., Ma, W.P.: Quantum key agreement protocols with four-qubit cluster states. Quantum Inf. Process. 14, 3483–3498 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  17. Sun, Z.W., Yu, J.P., Wang, P.: Efficient multi-party quantum key agreement by cluster states. Quantum Inf. Process. 15, 373–384 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  18. Boyer, M., Kenigsberg, D., Mor, T.: Quantum key distribution with classical bob. Phys. Rev. Lett. 99(14), 140501 (2007)

    ADS  MathSciNet  MATH  Google Scholar 

  19. Boyer, M., Gelles, R., Kenigsberg, D., Mor, T.: Semiquantum key distribution. Phys. Rev. A. 79(3), 032341 (2009)

    ADS  MathSciNet  MATH  Google Scholar 

  20. Wang, J., Zhang, S., Zhang, Q., Tang, C.J.: Semiquantum secret sharing using two-particle entangled state. Int. J. Quantum Inf. 10(5), 1250050 (2012)

    MathSciNet  MATH  Google Scholar 

  21. Li, Q., Chan, W.H., Long, D.Y.: Semiquantum secret sharing using entangled states. Phys. Rev. A. 82(2), 022303 (2010)

    ADS  Google Scholar 

  22. Li, L.Z., Qiu, D.W., Mateus, P.: Quantum secret sharing with classical bobs. J. Phys. A Math. Theor. 46(4), 045304 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  23. Gao, G., Wang, Y., Wang, D.: Multiparty semiquantum secret sharing based on rearranging orders of qubits. Mod. Phys. Lett. B. 30(10), 1650130 (2016)

    ADS  MathSciNet  Google Scholar 

  24. Yu, K.F., Gu, J., Hwang, T., Gope, P.: Multi-party semi-quantum key distribution-convertible multi-party semi-quantum secret sharing. Quantum Inf. Process. 16(8), 194 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  25. Yin, A., Wang, Z., Fu, F.: A novel semi-quantum secret sharing scheme based on bell states. Mod. Phys. Lett. B. 31(13), 1750150 (2017)

    ADS  Google Scholar 

  26. Gao, G., Wang, Y., Wang, D.: Cryptanalysis of a semi-quantum secret sharing scheme based on Bell states. Mod. Phys. Lett. B. 32(9), 1850117 (2018)

    ADS  MathSciNet  Google Scholar 

  27. Zou, X., Qiu, D., Li, L., Wu, L., Li, L.: Semiquantum-key distribution using less than four quantum states. Phys. Rev. A. 79(5), 052312 (2009)

    ADS  Google Scholar 

  28. Zhang, X.Z., Gong, W.G., Tan, Y.G., Ren, Z.Z., Guo, X.T.: Quantum key distribution series network protocol with M-classical Bobs. Chin. Phys. B. 18(6), 2143 (2009)

    ADS  Google Scholar 

  29. Jian, W., Sheng, Z., Quan, Z., Chao-Jing, T.: Semiquantum key distribution using entangled states. Chin. Phys. Lett. 28(10), 100301 (2011)

    Google Scholar 

  30. Yu, K.F., Yang, C.W., Liao, C.H., Hwang, T.: Authenticated semi-quantum key distribution protocol using bell states. Quantum Inf. Process. 13(6), 1457–1465 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  31. Zou, X.F., Qiu, D.W.: Three-step semiquantum secure direct communication protocol. Sci. China Phys. Mech. Astron. 57(9), 1696–1702 (2014)

    ADS  Google Scholar 

  32. Luo, Y.P., Hwang, T.: Authenticated semi-quantum direct communication protocols using bell states. Quantum Inf. Process. 15(2), 947–958 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  33. Zhang, M.H., Li, H.F., Xia, Z.Q., Peng, J.Y., Peng, J.Y.: Semiquantum secure direct communication using EPR pairs. Quantum Inf. Process. 16(5), 117 (2017)

    ADS  MATH  Google Scholar 

  34. Shukla, C., Thapliyal, K., Pathak, A.: Semi-quantum communication: protocols for key agreement, controlled secure direct communication and dialogue. Quantum Inf. Process. 16, 295 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  35. Liu, W.J., Chen, Z.Y., Ji, S., Wang, H.B., Zhang, J.: Multi-party semi-quantum key agreement with delegating quantum computation. Int. J. Theor. Phys. 56, 3164–3174 (2017)

    MathSciNet  MATH  Google Scholar 

  36. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. Lett. 65(3), 032302 (2002)

    ADS  Google Scholar 

  37. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A. 68(4), 042317 (2003)

    ADS  Google Scholar 

  38. Cai, Q.Y.: Eavesdropping on the two-way quantum communication protocols with invisible photons. Phys. Lett. A. 351(1–2), 23–25 (2006)

    ADS  MATH  Google Scholar 

  39. Li, X.H., Deng, F.G., Zhou, H.Y.: Improving the security of secure direct communication based on the secret transmitting order of particles. Phys. Rev. A. 74(5), 054302 (2006)

    ADS  Google Scholar 

  40. Deng, F.G., Li, X.H., Zhou, H.Y., Zhang, Z.J.: Improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys. Rev. A. 72(4), 044302 (2005)

    ADS  Google Scholar 

  41. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74(1), 145–795 (2002)

    ADS  MATH  Google Scholar 

  42. Cabello, A.: Quantum key distribution in the Holevo limit. Phys. Rev. Lett. 85, 5635–5638 (2000)

    ADS  Google Scholar 

  43. Damgard, I.B.: A design principle for hash functions. Adv. Cryptol. 89(435), 416–427 (1990)

    MathSciNet  MATH  Google Scholar 

  44. Thapliyal, K., Sharma, R. D., Pathak, A.,: Orthogonal-state-based and semi-quantum protocols for quantum private comparison in noisy environment. International Journal of Quantum Information, 16(05),1850047 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  45. Jia, H.Y., Wen, Q.Y., Song, T.T., Gao, F.: Quantum protocol for millionaire problem. Opt. Commun. 284, 545–549 (2011)

    ADS  Google Scholar 

  46. Yang, Y.G., Wen, Q.Y.: An efficient two-party quantum private comparison protocol with decoy photons and two-photon entanglement. J. Phys. A Math. Theor. 42, 055305 (2009)

    ADS  MathSciNet  MATH  Google Scholar 

  47. Lin, J., Yang, C.W., Hwang, T.: Quantum private comparison of equality protocol without a third party. Quantum Inf. Process. 13, 239–247 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  48. Zhang, B., Liu, X.T., Wang, J., Tang, C.J.: Cryptanalysis and improvement of quantum private comparison of equality protocol without a third party. Quantum Inf. Process. 14, 4593–4600 (2015)

    ADS  MathSciNet  Google Scholar 

  49. Gao, F., Liu, B., Huang, W., Wen, Q.Y.: Postprocessing of the oblivious key in quantum private query. IEEE. J. Sel. Top. Quant. 21, 6600111 (2015)

    Google Scholar 

  50. Gao, F., Qin, S.J., Huang, W., Wen, Q.Y.: Quantum private query: a new kind of practical quantum cryptographic protocols. Sci. China-Phys. Mech. Astron. 62, 070301 (2019)

    Google Scholar 

  51. Wei, C.Y., Cai, X.Q., Liu, B., Wang, T.Y., Gao, F.: A generic construction of quantum-oblivious-key-transfer-based private query with ideal database security and zero failure. IEEE Trans. Comput. 67, 2–8 (2018)

    MathSciNet  MATH  Google Scholar 

  52. Jakobi, M., Simon, C., Gisin, N., Bancal, J.D., Branciard, C., Walenta, N., Zbinden, H.: Practical private database queries based on a quantum-key-distribution protocol. Phys. Rev. A. 83(2), 022301 (2011)

  53. Gao, X., Chang, Y., Zhang, S.B., Yang, F., Zhang, Y.: Quantum private query based on Bell state and single photons. Int. J. Theor. Phys. 57, 1983–1989 (2018)

    MathSciNet  MATH  Google Scholar 

  54. Chang, Y., Xiong, J.X., Gao, X.: Quantum private query protocol based on EPR pairs. Chin. J. Electron. 27(2), 256–262 (2018)

    Google Scholar 

  55. Shi, R.H., Mu, Y., Zhong, H., Zhang, S.: Quantum oblivious set-member decision protocol. Phys. Rev. A. 92, 022309 (2015)

    ADS  Google Scholar 

  56. Shi, R.H., Mu, Y., Zhong, H., Zhang, S., Cui, J.: Quantum private set intersection cardinality and its application to anonymous authentication. Inf. Sci. 370-371, 147–158 (2016)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61572086, 61402058), Major Project of Education Department in Sichuan (Grant No. 18ZA0109) and Planning project of Sichuan Network Culture Research Center (Grant No. WLWH18-22).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lili Yan.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, L., Zhang, S., Chang, Y. et al. Semi-Quantum Key Agreement and Private Comparison Protocols Using Bell States. Int J Theor Phys 58, 3852–3862 (2019). https://doi.org/10.1007/s10773-019-04252-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-019-04252-y

Keywords

Navigation