Skip to main content
Log in

New Quantum Private Comparison Protocol Without a Third Party

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

This paper presents a novel quantum private comparision (QPC) protocol based on the single-qubit rotations, quantum SWAP-test and quantum SWAP gates. The proposed QPC protocol can secretly compare information of the two participants without the help of a third party (TP). The security analysis of the presented QPC protocol shows that it is quantum indistinguishable and information theory security for all outside attackers and inside attackers. Finally, we compare some important features of the presented QPC protocol with other QPC protocols. The results show that the proposed protocol has some advantages different from previous protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Xu, T.T., Li, Z.H., Bai, C.M., et al.: A new improving quantum secret sharing scheme. Int. J. Theor. Phys. 56, 1–10 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  2. Bai, C.M., Li, Z.H., Xu, T.T., et al.: Quantum secret sharing using the d-dimensional GHZ state. Quantum Inf. Process. 16(3), 59 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  3. Zhang, W., Ding, D.S., Sheng, Y.B., et al.: Quantum secure direct communication with quantum memory. Phys. Rev. Lett. 118(22), 220501 (2017)

    Article  ADS  Google Scholar 

  4. He, Y.F., Ma, W.P.: Three-party quantum secure direct communication against collective noise. Quantum Inf. Process. 16(10), 252 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  5. Wu, W.Q., Cai, Q.Y., Zhang, H.G., et al.: Quantum Public key cryptosystem based on bell sates. Int. J. Theor. Phys. 56(11), 3431–3440 (2017)

    Article  Google Scholar 

  6. Wu, W.Q., Cai, Q.Y., Zhang, H.G., et al.: Bit-oriented quantum public-key cryptosystem based on bell states. Int. J. Theor. Phys. 57(12), 1–11 (2018)

    MathSciNet  MATH  Google Scholar 

  7. Yang, Y.G., Cao W.F., Wen Q.Y.: Secure quantum private comparison. Physica Scripta 80(6), 065002 (2009)

    Article  ADS  Google Scholar 

  8. Ye, T.Y., Ji, Z.X.: Two-party quantum private comparison with five-qubit entangled states. Int. J. Theor. Phys. 56(5), 1517–1529 (2017)

    Article  MathSciNet  Google Scholar 

  9. Pan, H.M.: Quantum private comparison based on x-type entangled states. Int. J. Theor. Phys. 56(10), 3340–3347 (2017)

    Article  MathSciNet  Google Scholar 

  10. Ji, Z.X., Ye, T.Y.: Multi-party quantum private comparison based on the entanglement swapping of d-level cat states and d-level Bell states. Quantum Inf. Process. 16(7), 177 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  11. Xu, L., Zhao, Z.: A robust and efficient quantum private comparison of equality based on the entangled swapping of GHZ-like state and χ+ state. Int. J. Theor. Phys. 56(8), 2671–2685 (2017)

    Article  Google Scholar 

  12. Xu, L., Zhao, Z.: Quantum private comparison protocol based on the entanglement swapping between (χ+) state and W-Class state. Quantum Inf. Process. 16(12), 302 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  13. Zhou, M.K.: Improvements of quantum private comparison protocol based on cluster states. Int. J. Theor. Phys. 2, 1–6 (2017)

    Google Scholar 

  14. Wu, W.Q., Cai, Q.Y., Wu, S.M., et al.: Cryptanalysis and improvement of Ye others’s quantum private comparison protocol. Int. J. Theor. Phys. 2019, 1–7 (2019)

    Google Scholar 

  15. Hung, S.M., Hwang, S.L., Hwang, T., et al.: Multiparty quantum private comparison with almost dishonest third parties for strangers. Quantum Inf. Process. 16(2), 36 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  16. Wu, W.Q., Cai, Q.Y., Wu, S.M., et al.: Cryptanalysis of He’s quantum private comparison protocol and a new protocol. Int. J. Quantum Inf. 17(3), 1950026 (2019)

    Article  MathSciNet  Google Scholar 

  17. Lin, J., Yang, C.W., Hwang, T.: Quantum private comparison of equality protocol without a third party. Quantum Inf. Process. 13(2), 157 (2013)

    MathSciNet  MATH  Google Scholar 

  18. He, G.P.: Quantum private comparison protocol without a third party. Int. J. Quantum Inf. 15(2), 1750014 (2016)

    Article  MathSciNet  Google Scholar 

  19. He, G.P.: Device-independent quantum private comparison protocol without a third party. arXiv:1710.05051

  20. Chuang, I.L.: Quantum computation and quantum information. Cambridge University Press, Cambridge (2008)

    Google Scholar 

  21. Gockenbach, M.S.: Finite-dimensional linear algebra. CRC Press, Boca Raton (2010)

    Book  Google Scholar 

Download references

Acknowledgments

The authors are supported by the Natural Science Foundation of HeBei Province Nos. F2017201199.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to WanQing Wu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, W., Zhou, G., Zhao, Y. et al. New Quantum Private Comparison Protocol Without a Third Party. Int J Theor Phys 59, 1866–1875 (2020). https://doi.org/10.1007/s10773-020-04454-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-020-04454-9

Keywords

Navigation