Skip to main content
Log in

A Secure Quantum Voting Scheme Based on Orthogonal Product States

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

As an important topic of quantum cryptography, quantum voting has attracted more and more attention in recent years. In this paper, we propose a quantum voting scheme based on a new set of orthogonal product states. Since different particles in the same orthogonal product state are transmitted separately, the security of the vote message in the scheme can be protected. The availability and security analysis show that the scheme satisfies the basic properties of voting can resist known quantum attacks. Furthermore, our scheme solves the problem of difficult preparation of entangled states in actual situations and improves the practicability of voting scheme. We hoped that our research will provide new ideas for the further study of quantum voting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Naseri, M., Gong, L.H., Houshmand, M., Matin, L.F.: An anonymous surveying protocol via greenberger-horne-zeilinger states. Int. J. Theoretical Phys. 55(10), 4436–4444 (2016)

    Article  ADS  Google Scholar 

  2. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)

    Article  MathSciNet  Google Scholar 

  3. Grover, L.K.: Fast quantum mechanical algorithm for database search. Twenty-eighth ACM Symposium on Theory of Computing, pp. 212–219 (1996)

  4. Hillery. M., Ziman, M., Bužek, V., et al.: Towards quantum-based privacy and voting. Physics Letters A 349(1-4), 75–81 (2006)

    Article  ADS  Google Scholar 

  5. Vaccaro, J.A., Spring, J., Chefles, A.: Quantum protocols for anonymous voting and surveying. Physical Review A 75(1), 10064–10070 (2005)

    Google Scholar 

  6. Horoshko, D., Kilin, S.: Quantum anonymous voting with anonymity check. Physics Letters A 375(8), 1172–1175 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  7. Bonanome, M., et al.: Toward protocols for quantum-ensured privacy and secure voting. Physical Review A 84(2), 290–296 (2011)

    Article  MathSciNet  Google Scholar 

  8. Hillery, M.: Quantum voting and privacy protection: first steps. Spienewsroom (2006)

  9. Vaccaro, J.A., Spring, J., Chefles, A.: Quantum protocols for anonymous voting and surveying. Physical Review A 75(1), 012333 (2007)

    Article  ADS  Google Scholar 

  10. Wang, Q.L., Yu, C., Gao, F., Qi, H., Wen, Q.: Self-tallying quantum anonymous voting. Physical Review A 94(2), 022333 (2016)

    Article  ADS  Google Scholar 

  11. Cao, H.J., Ding, L.Y., Yu, Y.F., Li, P.F.: A electronic voting scheme achieved by using quantum proxy signature. Int. J. Theor. Phys. 55(9), 4081–4088 (2016)

    Article  MathSciNet  Google Scholar 

  12. Thapliyal, K., Sharma, R.D., Pathak, A.: Protocols for quantum binary voting. International Journal of Quantum Information 15(01), 1750007 (2017)

    Article  ADS  Google Scholar 

  13. Zhang, J.L., Xie, S.C., Zhang, J.Z.: An elaborate secure quantum voting scheme. International Journal of Theoretical Physics 56, 3019–3028 (2017)

    Article  ADS  Google Scholar 

  14. Zhang, J.L., Zhang, J.Z., Xie, S.C.: A choreographed distributed electronic voting scheme. International Journal of Theoretical Physics 57, 2676–2686 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  15. Zhang, K.J., Song, T.T., Zuo, H.J., Zhang, W.W.: A secure quantum group signature scheme based on Bell states. Physica Scripta 87(4), 045012 (2013)

    Article  ADS  Google Scholar 

  16. Zhang, K.J., Sun, Y., Song, T.T., Zuo, H.J.: Cryptanalysis of the quantum group signature protocols. Int. J. Theor. Phys. 52(11), 4163–4173 (2013)

    Article  MathSciNet  Google Scholar 

  17. Zhang, K.J., Zhang, W.W., Li, D.: Improving the security of arbitrated quantum signature against the forgery attack. Quantum Inf. Process. 12 (8), 2655–2669 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  18. Zhang, K.J., Qin, S.J., Sun, Y., Song, T.T., Su, Q.: Reexamination of arbitrated quantum signature: the impossible and the possible. Quantum Inf. Process. 12(9), 3127–3141 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  19. Zhang, K.J., Li, D., Su, Q.: Security of the arbitrated quantum signature protocols revisited. Physica Scripta 89(1), 169–174 (2014)

    Google Scholar 

  20. Sun, H.W., Zhang, L., Zhang, K.J., Wang, Q.L., Cai, X.Q.: The Security problems in some novel arbitrated quantum signature protocols. Int. J. Theor. Phys. 56, 2433–2444 (2017)

    Article  Google Scholar 

  21. Yang, Y.G., WEN, Q.Y., ZHU, F.C.: An efficient quantum secret sharing protocol with orthogonal product states. Science in China Series G: Physics, Mechanics Astronomy 50(3), 331*338 (2007)

    MATH  Google Scholar 

  22. Li, X.Y., Zhao, Q.Y.: Determined key distribution protocol using orthogonal product states. Applied Mechanics Materials 278-280, 1799–1803 (2013)

    Article  ADS  Google Scholar 

  23. Jiang, DH, Wang, J, Liang, XQ, et al.: Quantum voting scheme based on locally indistinguishable orthogonal product states[J]. International Journal of Theoretical Physics 59(12) (2019)

  24. Jiang, DH, Hu, QZ, Liang, XQ, et al.: A trusted third-party e-payment protocol based on locally indistinguishable orthogonal product states[J]. International Journal of Theoretical Physics 59(6) (2020)

  25. Halder, S, Banik, M, Agrawal, S, et al.: Strong quantum nonlocality without entanglement. Phys. Rev. Lett. 112(4), 040403.1–040403.7 (2019)

    Google Scholar 

  26. Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68(21), 3121 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  27. Goldenberg, L., Vaidman, L.: Quantum cryptography based on orthogonal states. Phys. Rev. Lett. 75(7), 1239–1243 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  28. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Physical Review A 65(3) (2002)

  29. Shor, P.W., Preskill, J.: Simple proof of security of the bb84 quantum key distribution protocol. Phys. Rev. Lett. 85(2), 441–444 (2000)

    Article  ADS  Google Scholar 

  30. Inamori, H., Lutkenhaus, N., Mayers, D.: Unconditional security of practical quantum key distribution. European Physical Journal D 41(3), 599–627 (2007)

    Article  ADS  Google Scholar 

  31. Lo, H.-K.: A simple proof of the unconditional security of quantum key distribution. Journal of Physics A: Mathematical and General 34(35), 6957–6967 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  32. Wang, Q., Das, S., Wilde, M.M.: Hadamard quantum broadcast channels. Quantum Inf. Process 16(10), 248 (2017)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was funded by the National Natural Science Foundation of China under Grant (No.61932005), National Natural Science Foundation of China under Grant No. 61802118, Natural Science Foundation of Heilongjiang Province under Grant No.YQ2020F013 and No.LH2019F031 and No.JJ2019LH1770, University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province under Grant No. UNPYSCT-2018015, Open Foundation of State key Laboratory of Networking and Switching Technology (BUPT) under Grant No. SKLNST-2018-1-07, the Special Funds of Heilongjiang University of the Fundamental Research Funds for the Heilongjiang Province (RCCXYJ201812).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-Guang Ma.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, G., Zhou, BM., Ma, CG. et al. A Secure Quantum Voting Scheme Based on Orthogonal Product States. Int J Theor Phys 60, 1374–1383 (2021). https://doi.org/10.1007/s10773-021-04763-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-021-04763-7

Keywords

Navigation