Skip to main content
Log in

Thermomechanical coupling effects in a materially nonlinear disk under impulsive radial loading

  • Published:
International Applied Mechanics Aims and scope

Abstract

A thermomechanically generalized Bodner-Partom model is developed. It is used to determine the fraction of plastic work that is not dissipated into heat and is stored in the material and to find a numerical solution to the dynamic thermomechanical problem for a disk under radial impulsive loading and to analyze the change in temperature due to thermomechanical coupling

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. P. Bol’shakov, S. A. Novikov, and V. A. Sinitsyn, “Dynamic uniaxial tension and compression curves of copper and alloy AMg6,” Strength of Materials, 11, No. 10, 1159–1161 (1979).

    Article  Google Scholar 

  2. Ya. A. Zhuk, I. K. Senchenkov, V. I. Kozlov, and G. A. Tabieva, “Axisymmetric dynamic problem of coupled thermoviscoplasticity,” Int. Appl. Mech., 37, No. 10, 1311–1317 (2001).

    Article  Google Scholar 

  3. I. A. Motovilovets and V. I. Kozlov, Thermoelasticity, Vol. 1 of the five-volume series Mechanics of Coupled Fields in Structural Members [in Russian], Naukova Dumka, Kyiv (1987).

    Google Scholar 

  4. I. K. Senchenkov and Ya. A. Zhuk, “Thermodynamic analysis of one model of thermoviscoplastic deformation of materials,” Prikl. Mekh., 33, No. 2, 41–48 (1997).

    Google Scholar 

  5. G. B. Talypov, Plasticity and Strength of Steel under Compound Loading [in Russian], Izd. Leningrad. Univ., Leningrad (1968).

    Google Scholar 

  6. V. V. Kharchenko, Modeling High Strain-Rate Deformation of Materials in View of Viscoplastic Effects [in Russian], Logos, Kyiv (1999).

    Google Scholar 

  7. A. J. Holzer, “A tabular summary of some experiments in dynamic plasticity,” J. Eng. Mater. Technol., 101, No. 7, 231–237 (1979).

    Article  Google Scholar 

  8. M. D. Bever, D. L. Holt, and A. L. Titchener, “The stored energy of cold work,” in: B. Chalmers et al. (ed.), Progress in Materials Science, 17, 1–192 (1973).

  9. S. R. Bodner, Unified Plasticity, Inst. of Techn., Haifa (2000).

    Google Scholar 

  10. S. R. Bodner and A. Lindenfeld, “Constitutive modelling of the stored energy of cold work under cyclic loading,” Eur. J. Mech., A/Solids, 14, No. 3, 333–348 (1995).

    MATH  Google Scholar 

  11. S. R. Bodner and M. B. Rubin, “Modelling of very high strain rates,” J. Appl. Phys., 76, 2742–2747 (1994).

    Article  ADS  Google Scholar 

  12. A. Chrysochoos, “The heat evolved during an elastic-plastic transformation at finite strain,” Thermomechanical Couplings in Solids, North-Holland (1987), pp. 79–84.

  13. L. M. Clarebrough, M. E. Hargreaves, D. Michell, and G. W. West, “The determination of the energy stored in a metal during plastic deformation,” Proc. Royal. Soc. London, Ser. A, 215, 507–524 (1952).

    Article  ADS  Google Scholar 

  14. O. W. Dillon, Jr., “The heat generation during the torsional oscillations of copper tubes,” Int. J. Solids Struct., 2, No. 2, 181–204 (1966).

    Article  Google Scholar 

  15. D. P. Harvey and R. J. Bonenberger, Jr., “Detection of fatigue macrocracks in 1100 aluminium from thermomechanical data,” Eng. Fract. Mech., 65, 609–620 (2000).

    Article  Google Scholar 

  16. M. M. Heaque and M. S. J. Hashmi, “Stress-strain properties of structural steel at strain rates of up to 105 per second at sub-zero, room and high temperatures,” Mech. Mater., 3, 245–256 (1984).

    Article  Google Scholar 

  17. A. E. Green and P. M. Naghdi, “The second law of thermodynamics and cyclic processes,” ASME J. Appl. Mech., 45, 487–492 (1978).

    Google Scholar 

  18. M. Kamlah and P. Haupt, “On the macroscopic description of stored-energy and self-heating during plastic deformation,” Int. J. Plast., 13, No. 10, 893–911 (1998).

    Article  Google Scholar 

  19. R. Kapoor and S. Nemat-Nasser, “Determination temperature rise during high strain rate deformation,” Mech. Mater., 27, No. 1, 1–12 (1998).

    Article  Google Scholar 

  20. G. Kim and S. Im, “Approximate analysis of a shear band in thermoviscoplastic material,” Trans. ASME, J. Appl. Mech., 66, No. 3, 677–694 (1999).

    Article  MathSciNet  Google Scholar 

  21. H. Loushe and A. Chrysochoos, “Thermal and dissipative effects accompanying Luders band propagation,” Mater. Sci. Eng., 307, 15–22 (2001).

    Article  Google Scholar 

  22. M. P. Luong, “Fatigue limit evaluation of metals using an infrared thermographic technique,” Mech. Mater., 28, 155–163 (1998).

    Article  Google Scholar 

  23. V. V. Piskun, “Elastoplastic deformation of a compound disk under impulsive loading,” Int. Appl. Mech., 41, No. 4, 421–425 (2005).

    Article  Google Scholar 

  24. I. K. Senchenkov, Ya. A. Zhuk, and V. G. Karnaukhov, “Modelling the thermomechanical behaviour of physically non-linear materials under monoharmonic loading,” Int. Appl. Mech., 40, No. 9, 943–969 (2004).

    Article  Google Scholar 

  25. I. K. Senchenkov, “Thermal effects in a physically nonlinear cylinder under impulsive loading,” Int. Appl. Mech., 41, No. 8, 890–894 (2005).

    Article  Google Scholar 

  26. T. G. Shawki, “The phenomenon of shear strain localisation in dynamic viscoplasticity,” Appl. Mech. Rev., 45, No. 3, Pt. 2, 46–61 (1992).

    Article  MathSciNet  Google Scholar 

  27. Yu. N. Shevchenko and V. V. Piskun, “Axisymmetric thermoelastoplastic stress state of isotropic solids of revolution under impulsive loading,” Int. Appl. Mech., 39, No. 5, 546–555 (2003).

    Article  Google Scholar 

  28. I. M. Smith and D. V. Griffiths, Programming the Finite Element Method, John Wiley & Sons, Chichester, New York (1997).

    MATH  Google Scholar 

  29. G. I. Taylor and H. Quinney, “The latent energy remaining in metal after cold working,” Proc. Royal Soc. London, A, 143, 307–326 (1934).

    ADS  Google Scholar 

  30. W. Thompson, “On the thermoelastic, thermomagnetic and pyroelectric properties of material,” Phil. Mag., 5, 4–27 (1978).

    Google Scholar 

  31. Ya. A. Zhuk and I. K. Senchenkov, “Modelling the stationary vibrations and dissipative heating of thin-walled inelastic elements with piezoactive layers,” Int. Appl. Mech., 40, No. 5, 546–556 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Prikladnaya Mekhanika, Vol. 42, No. 8, pp. 126–135, August 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Senchenkov, I.K., Andrushko, N.F. Thermomechanical coupling effects in a materially nonlinear disk under impulsive radial loading. Int Appl Mech 42, 951–958 (2006). https://doi.org/10.1007/s10778-006-0165-1

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10778-006-0165-1

Keywords

Navigation