Skip to main content
Log in

Elements of the Theory of Stability of Hybrid Systems (Review)

  • Published:
International Applied Mechanics Aims and scope

The sufficient conditions for different types of stability of three classes of hybrid systems modeled by dynamic equations on a time scale, impulsive hereditary systems, and equations in the Banach space are discussed. Some general results are illustrated by examples and applications in mechanics and theory of neural networks

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Yu. Aleksandrov and A. V. Platonov, Differential Inequalities and Stability of Motion [in Russian], Solo, St. Petersburg (2006).

    Google Scholar 

  2. A. Yu. Aleksandrov and A. V. Platonov, Comparison Method and Stability of the Motion of Nonlinear Systems [in Russian], Izd. SPb Univ., St.-Petersburg (2012).

    Google Scholar 

  3. L. Yu. Anapol’skii, “Comparison method in the analysis of discrete-time systems,” in: Setting up Vector Lyapunov Functions [in Russian], Nauka, Novosibirsk (1980), pp. 92–128.

  4. S. V. Babenko, Stability of the Motion of Large-Scale Continuous-Discrete Mechanical Systems subject to Structural Perturbations [in Russian], PhD Thesis, Inst. Mekh. NAN Ukrainy, Kyiv (2011).

  5. S. V. Babenko and A. A. Martynyuk, “Stability of controlled systems with two controls on the time scale,” J. Math. Sci., 197, No. 1, 4–12 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  6. A. V. Bartyshev, “Application of vector Lyapunov functions to the analysis of two-component systems,” in: Setting up Vector Lyapunov Functions [in Russian], Nauka, Novosibirsk (1980), pp. 237–256.

  7. M. Ya. Vaiman, Stability of Nonlinear Mechanical and Electromechanical Systems [in Russian], Mashinostroenie, Moscow (1981).

    Google Scholar 

  8. S. N. Vasil’ev and A. I. Malikov, “Some results on the stability of switched and hybrid systems,” in: Important Problems in Continuum Mechanics [in Russian], Foliant, Kazan (2011), pp. 23–81.

  9. S. N. Vasil’ev and A. E. Teregulov, “Stability theorems,” in: Setting up Vector Lyapunov Functions [in Russian], Nauka, Novosibirsk (1980), pp. 269–280.

  10. V. I. Zubov, Methods of A. M. Lyapunov and Their Application, Noordhoff, Groningen (1964).

    MATH  Google Scholar 

  11. I. L. Ivanov, “Stability of one model of a power system with delay and impulsive force,” Zb. Prats Inst. Mat. NAN Ukrainiy, 9, No. 1, 114–127 (2012).

    Google Scholar 

  12. I. L. Ivanov, Connective Stability of Large-Scale Impulsive Hereditary Systems [in Russian], PhD Thesis, Inst. Mekh. NAN Ukrainy, Kyiv (2014).

  13. N. N. Krasovskii, Some Problems in the Theory of Stability of Motion [in Russian], Fizmatgiz, Moscow (1959).

    Google Scholar 

  14. A. M. Lyapunov, The General Problem of the Stability of Motion, Taylor & Francis, London (1992).

    MATH  Google Scholar 

  15. I. G. Malkin, Theory of Stability of Motion, US Atomic Energy Commission, Washington (1952).

    MATH  Google Scholar 

  16. A. A. Martynyuk, Stability of Motion of Complex Systems [in Russian], Naukova Dumka, Kyiv (1975).

    Google Scholar 

  17. A. A. Martynyuk, “The Lyapunov matrix function and the stability of hybrid systems,” Int. Appl. Mech., 21, No. 4, 386–393 (1985).

    MathSciNet  ADS  MATH  Google Scholar 

  18. A. A. Martynyuk, “Exponential stability with respect to some of the variables,” Dokl. RAN, 331, No. 1, 17–19 (1993).

    Google Scholar 

  19. A. A. Martynyuk, “Exponential polystability of separable motions,” Dokl. RAN, 336, No. 4, 446–447 (1994).

    Google Scholar 

  20. A. A. Martynyuk, “Method of matrix-valued Lyapunov functions for equations in Banach space,” Dop. NAN Ukrainy, No. 7, 50–54 (2002).

  21. A. A. Martynyuk, “On the polydynamics of nonlinear systems on a time scale,” Dokl. Math., 75, No. 3, 411–414 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  22. A. A. Martynyuk, “General problem of polydynamics on a time scale,” Dop. NAN Ukrainy, No. 1, 7–13 (2008).

  23. A. A. Martynyuk, “On the exponential stability of a dynamical system on a time scale,” Dokl. Math., 78, No. 1, 535–540 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  24. A. A. Martynyuk, “Asymptotic stability criterion for nonlinear monotonic systems and its applications (review),” Int. Appl. Mech., 47, No. 5, 475–534 (2011).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. A. A. Martynyuk, “Stabilization of hereditary systems by impulsive perturbations,” Dop. NAN Ukrainy, No. 9, 62–65 (2012).

  26. A. A. Martynyuk, Theory of Stability of Solutions of Dynamic Equations on a Time Scale [in Russian], Feniks, Kyiv (2012).

    Google Scholar 

  27. A. A. Martynyuk, “On the stability of motion with respect to two measures for systems with aftereffect and impulsive perturbations,” J. Math. Sci., 203, No. 3, 350–358 (2014).

    Article  MathSciNet  Google Scholar 

  28. A. A. Martynyuk and I. L. Ivanov, “Connective stability of large-scale impulsive hereditary systems,” Dop. NAN Ukrainy, No. 7, 60–66 (2012).

  29. A. A. Martynyuk and I. L. Ivanov, “Connective stability of a three-machine power system with impulsive perturbations,” Dop. NAN Ukrainy, No. 7, 64–71 (2013).

  30. A. A. Martynyuk and V. G. Miladzhanov, “Stability of an impulsive system subject to structural perturbations,” Elektron. Modelir., 16, No. 1, 3–7 (1994).

    Google Scholar 

  31. A. A. Martynyuk and Yu. A. Martynyuk-Chernienko, “Robust stability of impulsive hereditary systems,” Dop. NAN Ukrainy, No. 8, 47–53 (2012).

  32. A. A. Martynyuk and V. I. Slyn’ko, “Stability of a nonlinear impulsive system,” Int. Appl. Mech., 40, No. 2, 231–239 (2004).

    Article  MathSciNet  ADS  Google Scholar 

  33. Yu. A. Martynyuk-Chernienko, ”On the stability of dynamical systems on a time scale,” Dokl. Math., 75, No. 2, 181–185 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  34. Yu. A. Martynyuk-Chernienko, “On the theory of stability of motion of a nonlinear system on a time scale,” Ukr. Math. J., 60, No. 6, 901–909 (2008).

    Article  MathSciNet  Google Scholar 

  35. Yu. A. Martynyuk-Chernienko, Uncertain Dynamical Systems: Stability and Motion Control [in Russian], Feniks, Kyiv (2009).

    Google Scholar 

  36. Yu. A. Martynyuk-Chernienko and L. N. Chernetskaya, “Analyzing the exponential stability of motion on time scales,” Int. Appl. Mech., 46, No. 4, 467–473 (2010).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  37. V. M. Matrosov, “Method of vector Lyapunov functions in the analysis of complex distributed-parameter systems,” Avtomat. Telemekh., No. 1, 5–22 (1973).

  38. V. M. Matrosov, Method of Vector Lyapunov Functions: Analysis of the Dynamic Properties of Nonlinear Systems [in Russian], Fizmatlit, Moscow (2001).

    Google Scholar 

  39. V. M. Matrosov and S. N. Vasil’ev, “Comparison principle in the dynamics of distributed-parameter systems,” in: V. G. Demin and V. M. Matrosov (eds.), Stability of Motions: Analytical Mechanics, Control of Motion [in Russian], Moscow (1981), pp. 198–217.

  40. A. A. Movchan, “Stability of processes with respect to two metrics,” J. Appl. Math. Mech., 24, No. 6, 1506–1524 (1960).

    Article  MATH  Google Scholar 

  41. V. V. Nemytskii and V. V. Stepanov, Qualitative Theory of Differential Equations, Dover, New York (1989).

    Google Scholar 

  42. A. M. Samoilenko and N. A. Perestyuk, Impulsive Differential Equations, World Scientific, Singapore (1987).

    Google Scholar 

  43. V. I. Slyn’ko, “Stability conditions for linear impulsive systems with delay,” Int. Appl. Mech., 41, No. 6, 697–703 (2005).

    Article  MathSciNet  Google Scholar 

  44. B. Aulbach and S. Hilger, “A unified approach to continuous and discrete dynamics,” in: B. Sz.-Nagy and L. Hatvani (eds.), Qualitative Theory of Differential Equations, North-Holland, Amsterdam (1990), pp. 37–56.

    Google Scholar 

  45. S. V. Babenko and A. A. Martynyuk, “Nonlinear dynamic inequalities and stability of quasi-linear systems on time scales,” Nonlin. Dynam. Syst. Theor., 13, No. 1, 13–24 (2013).

    MathSciNet  MATH  Google Scholar 

  46. S. V. Babenko and A. A. Martynyuk, “Stability of dynamic graph on time scales,” Nonlin. Dynam. Syst. Theor., 14, No. 1, 30–43 (2014).

    MathSciNet  Google Scholar 

  47. D. D. Bainov, A. B. Dishliev, and I. M. Stamova, “Practical stability of the solutions of impulsive systems of differential-difference equations via the method of comparison and applications to population dynamics,” ANZIAM J., 43, 525–539 (2002).

    MathSciNet  MATH  Google Scholar 

  48. D. D. Bainov and P. S. Simeonov, Systems with Impulse Effects: Stability, Theory and Applications, Halsted, New York (1989).

    MATH  Google Scholar 

  49. O. V. Beldiman, Control Nertworks, Duke University, Duke (1998).

    Google Scholar 

  50. M. Bohner and A. A. Martynyuk, “Elements of stability theory of A. M. Liapunov for dynamic equations on time scales,” Nonlin. Dynam. Syst. Theor., 7, No. 3, 225–251 (2007).

    MathSciNet  MATH  Google Scholar 

  51. M. Bohner and A. Peterson, Dynamic Equations on Time Scales: An Introduction with Applications, Birkhäuser, Boston (2001).

    Book  Google Scholar 

  52. D. Bowman, “q-Difference operators, orthogonal polynomials, and symmetric expansions,” Memoirs Amer. Math. Soc., 159, 1–56 (2002).

    Article  MathSciNet  Google Scholar 

  53. H. Brezis, Operateurs Maximaux Monotones, North-Holland Publ., Amsterdam (1973).

    MATH  Google Scholar 

  54. R. W. Brockett, “Hybrid models for motion control systems,” in: H. L. Trentelman and J. C. Willems (eds.), Essays in Control: Perspectives in the Theory and its Applications, Academic Press, New York (1993), pp. 29–53.

    Chapter  Google Scholar 

  55. T. A. Burton, Stability and Periodic Solutions of Ordinary and Functional Differential Equations, Academic Press, Orlando (1985).

    MATH  Google Scholar 

  56. M. G. Crandall and T. M. Liggett, “Semigroups of nonlinear transformations in Banach spaces, contribution to nonlinear functional analysis,” Amer. J. Math., 93, No. 2, 265–298 (1971).

    Article  MathSciNet  MATH  Google Scholar 

  57. C. Cruz-Hernandez and A. A. Martynyuk (eds.), Advances in Chaotic Dynamics with Applications, Cambridge Scientific Publishers, Cambridge (2010).

    Google Scholar 

  58. J. J. DaCunha, “Dynamic inequalities, bounds, and stability of systems with linear and nonlinear perturbations,” Nonlin. Dynam. Syst. Theor., 9, 239–248 (2009).

    MathSciNet  MATH  Google Scholar 

  59. J. J. DaCunha, Lyapunov Stability Theory and Floquet Theory for Nonautonomous Linear Dynamic Systems on Time Scales, PhD Thesis, Waco, Texas (2004).

  60. V. S. Denisenko, A. A. Martynyuk, and V. I. Slyn’ko, “Stability analysis of impulsive Takagi–Sugeno systems,” Int. J. Innov. Comput. Inform. Control, 5, No. 10(A), 3141–3155 (2009).

    Google Scholar 

  61. I. I. Dikin, L. V. Shelkunova, V. P. Skibenko, and N. I. Voropai, A New Approach to Construction of Optimal Stability Regions of Electric Power Systems on the Base of Quadratic Lyapunov Functions, Preprint, Energy Systems Inst. Russ. Acad. of Sciences, Irkutsk (1999).

  62. M. Z. Djordjević, “Stability analysis of interconnected systems with possible unstable subsystems,” Syst. Cont. Lett., 3, 165–169 (1983).

    Article  MATH  Google Scholar 

  63. M. Z. Djordjević, Zur Stabilität Nichtlinear Gekoppelter Systems mit der Matrix-Ljapunov-Methode, Diss. ETH Nr. 7690, Zürich.

  64. T. Gard and J. Hoffacker, “Asymptotic behavior of natural growth on time scale,” Dynam. Syst. Appl., No. 12, 131–147 (2003).

  65. Lj. T. Grujić, A. A. Martynyuk, and M. Ribbens-Pavella, Large Scale Systems Stability under Structural and Singular Perturbations, Springer-Verlag, Berlin (1987).

    Book  MATH  Google Scholar 

  66. W. M. Haddad, V. S. Chellaboina, and S. G. Nersesov, Impulsive and Hybrid Dynamical Systems, Princeton Univ. Press, Princeton (2006).

    Book  MATH  Google Scholar 

  67. J. Hale, Theory of Functional Differential Equations, Springer, New York (1977).

    Book  MATH  Google Scholar 

  68. S. Hilger, “Analysis on measure chains – a unified approach to continuous and discrete calculus,” Results Math., 18, No. 1–2, 18–56 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  69. E. Hille and R. S. Phillips, Functional Analysis and Semi-Groups, Dutt Press, Bengal, India (2008).

    Google Scholar 

  70. I. L. Ivanov and A. A. Martynyuk, “Stability results for delay power systems under impulsive perturbations,” Communication in Appl. Anal., 19, No. 1–2, 110–124 (2015).

    Google Scholar 

  71. J. He and M. Wang, “Remarks on exponential stability by comparison functions of the same order of amplitude,” Ann. Diff. Eqns., 7, No. 4, 409–414 (1991).

    MATH  Google Scholar 

  72. S. G. Krein, Linear Differential Equations in Banach Space, Amer. Mat. Soc., Rhode Island, Providence (1970).

    Google Scholar 

  73. T. Kurtz, “Convergence of sequences of semigroups of nonlinear equations with applications to gas kinetics,” Trans. Amer. Mat. Soc., 186, 259–272 (1973).

    Article  MathSciNet  Google Scholar 

  74. V. Lakshmikantham, “Stability and asymptotic behavior of solutions of differential equations in a Banach space,” in: Lecture Notes, CIME, Italy (1974), pp. 39–98.

  75. V. Lakshmikantham, “Differential equations in Banach spaces and extension of Lyapunov’s method,” Proc. Camb. Phi. Soc., 59, 343–381 (1963).

    MathSciNet  ADS  Google Scholar 

  76. V. Lakshmikantham, D. D. Bainov, and P. S. Simeonov, Theory of Impulsive Differential Equations, World Scientific, Singapore (1989).

    Book  MATH  Google Scholar 

  77. V. Lakshmikantham, S. Leela, and A. A. Martynyuk, Stability Analysis of Nonlinear Systems, Marcel Dekker, New York (1989).

    MATH  Google Scholar 

  78. A. A. Martynyuk, “The Lyapunov matrix-function,” Nonlin. Anal., 8, 1234–1241 (1984).

    Article  MathSciNet  Google Scholar 

  79. A. A. Martynyuk, “Lyapunov matrix-function and stability theory,” in: Proc. IMACS-IFAC Symp. IDN, Villeneuve d’Ascq., France (1986), pp. 261–265.

  80. A. A. Martynyuk, “The Lyapunov matrix function and stability of hybrid systems,” Nonlin. Anal., 10, 1449–1457 (1986).

    Article  MathSciNet  MATH  Google Scholar 

  81. A. A. Martynyuk, Stability by Liapunov’s Matrix Function Method with Applications, Marcel Dekker, New York (1998).

    Google Scholar 

  82. A. A. Martynyuk, “A survey of some classical and modern developments of stability theory,” Nonlin. Anal., 40, 483–496 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  83. A. A. Martynyuk, Qualitative Method in Nonlinear Dynamics. Novel Approaches to Liapunov’s Matrix Function, Marcel Dekker, New York (2002).

    Google Scholar 

  84. A. A. Martynyuk, “Matrix Liapunov functions and stability analysis of dynamical systems,” in: A. A. Martynyuk (ed.), Advances in Stability Theory at the End of 20th Century, Taylor and Francis, London and New York (2003), pp. 135–151.

    Google Scholar 

  85. A. A. Martynyuk, “Matrix Liapunov’s functions method and stability analysis of continuous systems,” CUBO. A Math. J., 6, No. 4, 209–257 (2004).

    MathSciNet  MATH  Google Scholar 

  86. A. A. Martynyuk, “Stability of dynamical systems in metric spaces,” Nonlin. Dynam. Syst. Theor., 5, No. 2, 157–167 (2005).

    MathSciNet  MATH  Google Scholar 

  87. A. A. Martynyuk, Stability of Motion: The Role of Multicomponent Liapunov’s Functions, Cambridge Scientific Publishers, Cambridge (2007).

    Google Scholar 

  88. A. A. Martynyuk, “An exploration of polydynamic of nonlinear equations on time scales,” ICIC Express Lett., 2, No. 2, 155–160 (2008).

    Google Scholar 

  89. A. A. Martynyuk, “Stability in the models of real world phenomena (survey),” Nonlin. Dynam. Syst. Theor., 11, No. 1, 7–52 (2011).

    MathSciNet  MATH  Google Scholar 

  90. A. A. Martynyuk, “Direct Lyapunov method on time scales,” Communications in Appl. Anal., 17, No. 3&4, 483–502 (2013).

    MathSciNet  MATH  Google Scholar 

  91. A. Martynyuk, L. Chernetskaya, and V. Martynyuk, Weakly Connected Nonlinear Systems. Boundedness and Stability of Motion, CRC Press, Taylor & Francis Group, Boca Raton (2013).

    Google Scholar 

  92. A. A. Martynyuk, T. A. Lukyanova, and S. N. Rasshivalova, “On stability of Hopfield neural network on time scales,” Nonlin. Dynam. Syst. Theor., 10, No. 4, 397–408 (2010).

    MATH  Google Scholar 

  93. A. A. Martynyuk and Yu. A. Martynyuk-Chernienko, Uncertain Dynamical Systems. Stability and Motion Control, CRC Press, Taylor & Francis Group, Boca Raton (2012).

    MATH  Google Scholar 

  94. A. A. Martynyuk and I. P. Stavroulakis, “Generalized stability of motion of impulsive Lurie–Postnikov systems with structural perturbations,” J. Appl. Math. Stoch. Anal., 11, 481–492 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  95. A. A. Martynyuk and I. P. Stavroulakis, “Stability analysis with respect to two measures of impulsive systems under structural perturbations,” Ukr. Math. J., 51, No. 11, 1668–1680 (1999).

    Article  MathSciNet  Google Scholar 

  96. J. L. Massera, “Contribution to stability theory,” Annals Math., 64, No. 1, 182–206 (1956).

    Article  MathSciNet  MATH  Google Scholar 

  97. A. N. Michel, “Recent trends in the stability analysis of hybrid dynamical systems,” IEEE Trans. on Circuits and Systems – 1: Fundamental Theory and Applications, 46, 120–134 (1999).

  98. A. N. Michel and R. K. Miller, Qualitative Analysis of Large Scale Dynamical Systems, Academic Press, New York (1977).

    MATH  Google Scholar 

  99. A. N. Michel, K. Wang, and B. Hu, Qualitative Theory of Dynamical Systems. The Role of Stability Preserving Mappings, Marcel Dekker, New York (2001).

    Book  MATH  Google Scholar 

  100. S. G. Nersesov and W. M. Haddad, “Control vector Lyapunov functions for large-scale impulsive dynamical systems,” Nonlinear Analysis: Hybrid Systems, 1, 223–243 (2007).

    MathSciNet  MATH  Google Scholar 

  101. M. Pavella, D. Ernst, and D. Ruis-Vega, Transient Stability of Power Systems. A Unified Approach to Assessment and Control, Kluwer, Boston (2000).

    Book  Google Scholar 

  102. P. Peleties and R. De Carlo, “Asymptotic stability of m-switched systems using Lyapunov-like functions,” in: Proc. 1991 American Control Conf. (1991), pp. 1679–1684.

  103. C. Potzsche, S. Siegmund, and F. Wirth, “A spectral characterization of exponential stability for linear time-invariant systems on time scales,” Discrete and Continuous Dynamical Systems, 9, No. 5, 1223–1241 (2003).

  104. M. Ribbens-Pavella, “Transient stability of multimachine power systems by Liapunov’s direct method,” in: Proc. IEEE PES Winter Meeting (1971), pp. 1–9.

  105. A. M. Samoilenko and N. A. Perestyuk, Impulsive Differential Equations, World Scientific, Singapore (1995).

    MATH  Google Scholar 

  106. J. H. Shen, “Razumikhin techniques in impulsive functional differential equations,” Nonlin. Anal., 36, 119–130 (1999).

    Article  MATH  Google Scholar 

  107. J. Shen, Z. Luo, and X. Liu, “Impulsive stabilization of functional differential equations via Liapunov functionals,” J. Math. Anal. Appl., 240, 1–5 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  108. J. Shen and J. Yan, “Razumikhin type stability theorems for impulsive functional differential equations,” Nonlin. Anal., 33, 519–531 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  109. Q. Sheng, “A view of dynamic derivatives on time scales from approximations,” J. Diff. Eqns. Appl., 11, No. 1, 63–81 (2005).

    Article  MATH  Google Scholar 

  110. D. D. Ĺ iljak, Large-Scale Dynamic Systems. Stability and Structure, North-Holland, New York (1978).

    MATH  Google Scholar 

  111. D. Smart, Fixed Point Theorems, Cambridge Univ. Press, Cambridge (1980).

    MATH  Google Scholar 

  112. I. Stamova, Stability Analysis of Impulsive Functional Differential Equations, de Gruyter, Berlin (2009).

    Book  MATH  Google Scholar 

  113. Q. Wang, Stability and Boundedness of Impulsive Systems with Time Delay, PhD Thesis, Univ. of Waterloo, Ontario, Canada (2007).

  114. L. Wang and X. Zou, “Exponential stability of Cohen–Grossberg neural networks,” Neural Networks, 16, 415–422 (2002).

    Article  Google Scholar 

  115. H. S. Witsenhausen, “A class of hybrid-state continuous-time dynamic systems,” IEEE Trans. Autom. Control, 11, 161–167 (1966).

    Article  Google Scholar 

  116. J. Yan and J. Shen, “Impulsive stabilization of functional differential equations by Lyapunov–Razumikhin functions,” Nonlin. Anal., 37, 245–255 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  117. T. Yoshizawa, Stability Theory by Liapunov’s Second Method, The Math. Soc. of Japan, Tokyo (1966).

    Google Scholar 

  118. J. Zhang, “Global stability analysis in Hopfield neural networks,” Appl. Math. Lett., 16, 925–931 (2003).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Martynyuk.

Additional information

Translated from Prikladnaya Mekhanika, Vol. 51, No. 3, pp. 3–66, May–June 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martynyuk, A.A. Elements of the Theory of Stability of Hybrid Systems (Review). Int Appl Mech 51, 243–302 (2015). https://doi.org/10.1007/s10778-015-0689-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10778-015-0689-3

Keywords

Navigation