Skip to main content
Log in

Hybrid Intercalative Nanocomposites

  • Published:
Inorganic Materials Aims and scope

Abstract

This review focuses on organic-inorganic hybrid nanocomposites, a research area that has made rapid progress in recent years. Inorganic components (hosts) include both natural materials (clays, silicates, smectites, layered phosphates, and others) and compounds prepared by different synthetic techniques. Into their interlayer spaces, various organic guests—solvents, monomers, and polymers—can be intercalated. Among the hybrid nanocomposites analyzed in detail are those based on polyconjugated electrically conducting polymers, such as poly(aniline) and poly(pyrrole), and various mineral matrices. Particular attention is paid to polymer-metal chalcogenide nanocomposites and their applications as semiconducting materials. One of the most common and practically important intracrystalline processes in the fabrication of hybrid nanocomposites is the incorporation of monomer molecules into pores of the host, followed by controlled internal transformations into polymer, oligomer, or hybrid-sandwich products (in situ postintercalative transformations). This approach is often called “ship-in-the-bottle” polymerization. Another widely used approach is the incorporation of macromolecules into layered host lattices from solutions or melts. This process offers the possibility of producing graphite intercalation compounds and inorganic-organic multilayer composites, including self-assembled nanocomposites in the form of (P/M) n multilayers, where M and P are oppositely charged inorganic and polymer nanolayers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Mehrotra, V., Giannelis, E.P., Ziolo, R.F., and Rogalskyj, P., Intercalation of Ethylenediamine Functionalized Buckminsterfullerene in Mica-Type Silicates, Chem. Mater., 1992, vol. 4, no.1, pp. 20–22.

    Article  CAS  Google Scholar 

  2. Wark, M., Porphyrins and Phthalocyanines Encapsulated in Inorganic Host Material, The Porphyrin Handbook, vol. 17: Phthalocyanines: Properties and Materials, Kadish, K.M. et al., Eds., Amsterdam: Elsevier, 2003, pp. 247–283.

    Google Scholar 

  3. Ogoshi, T., Itoh, H., Kim, K.-M., and Chujo, Y., Synthesis of Organic-Inorganic Polymer Hybrids Having Interpenetrating Polymer Network Structure by Formation of Ruthenium-Bipyridyl Complex, Macromolecules, 2002, vol. 35, no.2, pp. 334–338.

    Article  CAS  ISI  Google Scholar 

  4. Polymer-Clay Nanocomposites, Pinnavaia, T.J. and Beall, G.W., Eds., Wiley, 2000.

  5. Theng, B.K.G., Formation and Properties of Clay-Polymer Complexes, New York: Elsevier, 1979.

    Google Scholar 

  6. Van Bekkum, H., Flanigan, E.M., and Jansen, J.C., Introduction to Zeolite Science and Particle, Amsterdam: Elsevier, 1991.

    Google Scholar 

  7. The Handbook of Nanostructured Materials and Technology, Nalwa, H.S., Ed., San Diego: Academic, 1998.

    Google Scholar 

  8. Nanotechnology. Molecularly Designed Materials, Chow, G.-M. and Gonsalves, K.E., Eds., Washington, DC: Am. Chem. Soc., 1996.

    Google Scholar 

  9. Supramolecular Architecture—Tailoring Structure and Function of Extended Assemblies, ACS Symp. Ser., 1992, vol. 499.

  10. Moller, K. and Bein, T., Inclusion Chemistry in Periodic Mesoporous Hosts, Chem. Mater., 1998, vol. 10, no.10, pp. 2950–2963.

    CAS  Google Scholar 

  11. Lomakin, S.M. and Zaikov, G.E., Reduced-Combustibility Polymer Composites Based on Layer Silicates, Vysokomol. Soedin., Ser. B, 2005, vol. 47, no.1, pp. 104–120.

    CAS  Google Scholar 

  12. O'Hare, D., Organic and Organometallic Guests Intercalated in Layered Lattices, New. J. Chem., 1994, vol. 18, no.10, pp. 989–998.

    Google Scholar 

  13. Lagaly, G., Introduction: From Clay Mineral-Polymer Interactions to Clay Mineral-Polymer Nanocomposites, Appl. Clay Sci., 1999, vol. 15, no.1/2, pp. 1–9.

    CAS  Google Scholar 

  14. Matsumura, A., Komori, Y., Itagaki, T., et al., Preparation of a Kaolinite-Nylon 6 Intercalation Compound, Bull. Chem. Soc. Jpn., 2001, vol. 74, no.6, pp. 1153–1158.

    Article  CAS  Google Scholar 

  15. Clay Minerals: Their Structure, Behavior, and Use, Fowden, L., Barrer, R.M., and Tinker, P.B., Eds., London: The Royal Society, 1984.

    Google Scholar 

  16. Molecular Sieves—Science and Technology, vol. 3: Modification, Karge, H.G. and Weitkamp, J., Eds., Berlin: Springer, 2002.

    Google Scholar 

  17. Progress in Intercalation Research, Muller-Warmuth, W. and Schollhorn, R., Eds., Dordrecht: Kluwer, 1994.

    Google Scholar 

  18. Crystal Structures of Clay Minerals and Their X-ray Diffraction, Brindley, G.W. and Brown, G., Eds., London: Mineralogical Soc., 1980, vol. 5.

    Google Scholar 

  19. Schollhorn, R., Intercalation Systems as Nanostructured Functional Materials, Chem. Mater., 1996, vol. 8, no.8, pp. 1747–1757.

    Article  Google Scholar 

  20. Tamaki, R. and Chujo, Y., Synthesis of Polystyrene and Silica Gel Polymer Hybrids Utilizing Ionic Interactions, Chem. Mater., 1999, vol. 11, no.7, pp. 1719–1726.

    Article  CAS  Google Scholar 

  21. Shi, H., Lan, T., and Pinnavaia, T., Interfacial Effects on the Reinforcement Properties of Polymer-Organoclay Nanocomposites, J. Chem. Mater., 1996, vol. 8, no.8, pp. 1584–1587.

    Article  CAS  Google Scholar 

  22. Rozengart, M.I., V'yunova, G.M., and Isagulyants, G.V., Layer Silicates as Catalysts, Usp. Khim., 1988, vol. 57, no.2, pp. 204–227.

    CAS  Google Scholar 

  23. Panasyugin, A.S., Rat'ko, A.I., and Masherov, N.P., Montmorillonite Intercalated with Heteronuclear Fe-Cr Polyhydroxo Complexes, Zh. Neorg. Khim., 1998, vol. 43, no.9, pp. 1437–1440.

    CAS  Google Scholar 

  24. Rives, V., Layered Double Hydroxides: Present and Future, New York: Nova Science, 2001.

    Google Scholar 

  25. Wang, G., Cai, F., Si, L., et al., An Approach towards Nano-size Crystals of Poly(acrylic acid): Polymerization Using Layered Double Hydroxides as Template, Chem. Lett., 2005, vol. 34, no.1, pp. 94–95.

    Google Scholar 

  26. Bodo, P. and Sundgren, J.-E., Titanium Deposition onto Ion-Bombarded and Plasma-Treated Polydimethylsiloxane: Surface Modification, Interface, and Adhesion, Thin Solid Films, 1986, vol. 136, no.1, pp. 147–159.

    ISI  Google Scholar 

  27. Zakharova, G. and Volkov, V.L., Intercalation Compounds of Vanadium(V) Oxide Xerogel, Usp. Khim., 2003, vol. 72, no.4, pp. 346–362.

    Google Scholar 

  28. Liu, Y.-J. and Kanatzidis, M.G., Topotactic Polymerization of Aniline in Layered Uranyl Phosphate, Inorg. Chem., 1993, vol. 32, no.14, pp. 2989–2991.

    Article  CAS  Google Scholar 

  29. Ogata, S., Tasaka, Y., Tagaya, H., et al., Preparation of New Fibrous Layered Compounds by the Reaction of the Zinc Hydroxide with Organic Compounds, Chem. Lett., 1998, no. 3, pp. 237–238.

  30. Soares, R.F., Leite, C.A.P., Botter, W., and Galembeck, F., Inorganic Particle Coating with Poly(dimethylsiloxane), J. Appl. Polym. Sci., 1996, vol. 60, no.11, pp. 2001–2006.

    Article  CAS  Google Scholar 

  31. Hwang, Y.K., Lee, K.-C., and Kwon, Y.-U., Nanoparticle Routes to Mesoporous Titania Thin Films, Chem. Commun., 2001, no. 18, pp. 1738–1739.

  32. Zheng, L., Farris, R.J., and Coughlin, E.B., Novel Polyolefin Nanocomposites: Synthesis and Characterizations of Metallocene-Catalyzed Polyolefin Polyhedral Oligomeric Silsesquioxane Copolymers, Macromolecules, 2001, vol. 34, no.23, pp. 8034–8039.

    Article  CAS  ISI  Google Scholar 

  33. Ruckenstein, E. and Hong, L., Oxide-Carbon Composites and Porous Metal Oxides Prepared via Water-Swellable Polymer Networks, Chem. Mater., 1996, vol. 8, no.2, pp. 546–553.

    Article  CAS  Google Scholar 

  34. Hong, L. and Ruckenstein, E., Coating Metal Oxide Particles via the Combustion of Deposited Polymer Precursors, J. Appl. Polym. Sci., 1998, vol. 67, no.11, pp. 1891–1903.

    Article  CAS  Google Scholar 

  35. Lakshmi, B.B., Dorhout, P.K., and Martin, C.R., Sol-Gel Template Synthesis of Semiconductor Nanostructures, Chem. Mater., 1997, vol. 9, no.3, pp. 857–862.

    Article  CAS  Google Scholar 

  36. Martin, C.R., Nanomaterials: A Membrane-Based Synthetic Approach, Science, 1994, vol. 266, no.5193, pp. 1961–1995.

    CAS  ISI  Google Scholar 

  37. Ooka, C., Yoshida, H., Suzuki, K., and Hattori, T., Adsorption and Photocatalytic Degradation of Toluene Vapor in Air on Highly Hydrophobic TiO2 Pillared Clay, Chem. Lett., 2003, vol. 32, no.10, pp. 896–897.

    Article  CAS  Google Scholar 

  38. Mogyorosi, K., Dekany, I., and Fendler, J.H., Preparation and Characterisation of Clay Mineral Intercalated Titanium Dioxide Nanoparticles, Langmuir, 2003, vol. 19, no.7, pp. 2939–2946.

    Article  Google Scholar 

  39. Carpenter, J.P., Lukehart, C.M., Milne, S.B., et al., Organometallic Compounds as Single-Source Precursors to Nanocomposite Materials: An Overview, J. Organomet. Chem., 1998, vol. 557, no.1, pp. 121–130.

    Article  CAS  Google Scholar 

  40. Krumeich, F., Muhr, H.-J., Niederberger, M., et al., The Cross-Sectional Structure of Vanadium Oxide Nanotubes Studied by Transmission Electron Microscopy and Electron Spectroscopic Imaging, Z. Anorg. Allg. Chem., 2000, vol. 326, no.10, pp. 2208–2216.

    Google Scholar 

  41. Krumeich, F., Muhr H.-J, Niederberger M., et al., Morphology and Topochemical Reactions of Novel Vanadium Oxide Nanotubes, J. Am. Chem. Soc., 1999, vol. 121, no.42, pp. 8324–8331.

    CAS  Google Scholar 

  42. Pcholski, C., Kornowski, A., and Weller, H., Self-assembly of ZnO: From Nanodots to Nanorods, Angew. Chem. Int. Ed., 2002, vol. 41, no.7, pp. 1188–1191.

    Google Scholar 

  43. Patzke, G.R., Krumeich, F., and Nesper, R., Oxide Nanotubes and Nanorods—Anisotropic Modules for a Future Nanotechnology, Angew. Chem. Int. Ed., 2002, vol. 41, no.14, pp. 2446–2461.

    Article  CAS  Google Scholar 

  44. Lou, X.W. and Zeng, H.C., Complex α-MoO3 Nanostructures with External Bonding Capacity for Self-assembly, J. Am. Chem. Soc., 2003, vol. 125, no.9, pp. 2697–2704.

    Article  CAS  Google Scholar 

  45. Matsubara, I., Hosono, K., Murayama, N., et al., Synthesis and Gas Sensing Properties of Polypyrrole/MoO3 Layered Nanohybrids, Bull. Chem. Soc. Jpn., 2004, vol. 77, no.6, p. 1231.

    Article  CAS  Google Scholar 

  46. Chukanov, N.V., Pekov, I.V., and Rastsvetaeva, R.K., Crystal Chemistry, Properties, and Synthesis of Microporous Silicates Containing Transition Elements, Usp. Khim., 2004, vol. 73, no.3, pp. 227–246.

    Google Scholar 

  47. Pomogailo, A.D., Rozenberg, A.S., and Uflyand, I.E., Nanochastitsy metallov v polimerakh (Metal Nanoparticles in Polymers), Moscow: Khimiya, 2000.

    Google Scholar 

  48. Gomez-Romero, P., Hybrid Organic-Inorganic Materials—In Search of Synergic Activity, Adv. Mater., 2001, vol. 13, no.3, pp. 163–174.

    Article  CAS  Google Scholar 

  49. Kim, D W., Blumstein, A., and Tripathy, S.K., Nanocomposite Films Derived from Exfoliated Functional Aluminosilicate through Electrostatic Layer-by-Layer Assembly, Chem. Mater., 2001, vol. 13, no.5, pp. 1916–1922.

    CAS  Google Scholar 

  50. Laus, M., Camerani, M., Lelli, M., et al., Hybrid Nanocomposites Based on Polystyrene and a Reactive Organophilic Clay, J. Mater. Sci., 1998, vol. 33, no.11, pp. 2883–2888.

    Article  CAS  Google Scholar 

  51. Vyazovkin, S. and Dranca, I., A DSC Study of α-and β-Relaxation in a PS-Clay System, J. Phys. Chem. B, 2004, vol. 108, no.32, p. 11988.

    Article  Google Scholar 

  52. Utracki, L.A. and Simha, R., Pressure-Volume-Temperature Dependence of Polypropylene/Organoclay Nanocomposites, Macromolecules, 2004, vol. 37, no.26, p. 10123.

    Article  CAS  ISI  Google Scholar 

  53. Jurkowski, B. and Olkhov, Y.A., Studies of Structures of Poly-ε-caprolactam/Montmorillonite Nanocomposite, Termochim. Acta, 2004, vol. 414, no.1, pp. 85–90.

    Article  CAS  Google Scholar 

  54. Smith, C.R., Base Exchange Reactions of Bentonite and Salts of Organic Bases, J. Am. Chem. Soc., 1934, vol. 56, no.7, pp. 1561–1563.

    Article  CAS  Google Scholar 

  55. Blumstein, A., Polymerization of Adsorbed Monolayers, J. Polym. Sci., Part A: Polym. Chem., 1965, vol. 3, no.7, pp. 2653–2672.

    CAS  Google Scholar 

  56. Komori, Y., Matsumura, A., Itagaki, T., et al., Preparation of a Kaolin ε-Caprolactam Intercalation Compound, Clay Sci., 1999, vol. 11, no.1, pp. 47–55.

    CAS  Google Scholar 

  57. Tandon, S., Kesavamoorthy, R., and Asher, S.A., Image Charge Effects on Colloidal Crystal Ordering, J. Chem. Phys., 1998, vol. 109, no.15, pp. 64900–64906.

    Article  Google Scholar 

  58. Noh, M.H. and Lee, D.C., Comparison of Characteristics of SAN-MMT Nanocomposites Prepared by Emulsion and Solution Polymerization, J. Appl. Polym. Sci., 1999, vol. 74, no.12, pp. 2811–2819.

    Article  CAS  Google Scholar 

  59. Wu, J. and Lerner, M.M., Structural, Thermal, and Electrical Characterization of Layered Nanocomposites Derived from Sodium-Montmorillonite and Polyethers, Chem. Mater., 1993, vol. 5, no.6, pp. 835–838.

    Article  CAS  Google Scholar 

  60. Kojima, Y., Usuki, A., Kawasumi, M., and Okada, A., Synthesis of Nylon 6-Clay Hybrid by Montmorillonite Intercalated with ε-Caprolactam, J. Polym. Sci., Part A: Polym. Chem., 1993, vol. 31, no.4, pp. 983–986.

    Article  CAS  Google Scholar 

  61. D'yachkovskii, F.S. and Novokshonova, L.A., Synthesis and Properties of Polymer-Loaded Polyolefins, Usp. Khim., 1984, vol. 53, no.2, pp. 200–222.

    Google Scholar 

  62. Tudor, J., Willington, L., O'Hare, D., and Royan, B., Intercalation of Catalytically Active Metal Complexes in Phyllosilicates and Their Application as Propene Polymerization Catalysts, Chem. Commun., 1996, no. 17, pp. 2031–2032.

  63. Tudor, J. and O'Hare, D., Stereospecific Propene Polymerisation Catalysis Using an Organometallic Modified Mesoporous Silicate, Chem. Commun., 1997, no. 6, pp. 603–604.

  64. Johnson, L.K., Mecking, S.M., and Brookhart, M., Copolymerization of Ethylene and Propylene with Functionalized Vinyl Monomers by Palladium(II) Catalysts, J. Am. Chem. Soc., 1996, vol. 118, no.1, pp. 267–268.

    Article  CAS  Google Scholar 

  65. Bergman, J.S., Chen, H., Giannelis, E.P., et al., Synthesis and Characterization of Polyolefin-Silicate Nanocomposites: A Catalyst Intercalation and In Situ Polymerization Approach, Chem. Commun., 1999, no. 21, pp. 2179–2180.

  66. Chan, S.-H., Lin, Y.-Y., and Ting, C., Nanoblends of Incompatible Polymers by Direct Space-Confined Polymerization, Macromolecules, 2003, vol. 36, no.24, pp. 8910–8912.

    Article  CAS  ISI  Google Scholar 

  67. Ray, S.S. and Biswas, M., Preparation and Evaluation of Composites from Montmorillonite and Some Heterocyclic Polymers: II. A Nanocomposite from N-Vinylcarbazole and Ferric Chloride-Impregnated Montmorillonite Polymerization System, J. Appl. Polym. Sci., 1999, vol. 73, no.14, pp. 2971–2976.

    Article  CAS  Google Scholar 

  68. Zhu, Z.-K., Yang, Y., Yin, J., et al., Preparation and Properties of Organosoluble Montmorillonite/Polyimide Hybrid Materials, J. Appl. Polym. Sci., 1999, vol. 73, no.12, pp. 2063–2068.

    CAS  Google Scholar 

  69. Subramanyam, S. and Blumstein, A., Conjugated Ionic Polyacetylenes: 5. Spontaneous Polymerization of 2-Ethynylpyridine in a Strong Acid, Macromolecules, 1992, vol. 25, no.16, pp. 4058–4064.

    Article  CAS  ISI  Google Scholar 

  70. Kim, D.W., Blumstein, A., Liu, H., et al., Organic/Inorganic Nanocomposites Prepared by Spontaneous Polymerization of Ethynylpyridine within Montmorillonite, J. Macromol. Sci. Pure Appl. Chem., 2001, vol. 38, no.12, pp. 1405–1415.

    Google Scholar 

  71. Sahoo, S.K., Kim, D.W., Kumar, J., et al., Nanocomposites from In-Situ Polymerization of Substituted Polyacetylene within Lamellar Surface of the Montmorillonite: A Solid-State NMR Study, Macromolecules, 2003, vol. 36, no.8, pp. 2777–2784.

    Article  CAS  ISI  Google Scholar 

  72. Okada, A., Fukoshima, Y., Inagaki, S., et al., US Patent 4739007, 1988.

  73. Agag, T. and Takeichi, T., Polybenzoxazine-Montmorillonite Hybrid Nanocomposites: Synthesis and Characterization, Polymer, 2000, vol. 41, pp. 7083–7090.

    Article  CAS  ISI  Google Scholar 

  74. Wu, C.G. and Bein, T., Conducting Carbon Wires in Ordered, Nanometer-Sized Channels, Science, 1994, vol. 266, no.5187, pp. 1013–1015.

    CAS  ISI  Google Scholar 

  75. Kanatzidis, M.G., Bissessur, R., De Groot, D.C., et al., New Intercalation Compounds of Conjugated Polymers. Encapsulation of Polyaniline in Molybdenum Disulfide, Chem. Mater., 1993, vol. 5, no.5, pp. 595–596.

    Article  CAS  Google Scholar 

  76. Nascimento, G.M., Constantino, V.R.L., Landers, R., and Temperini, M.L.A., Aniline Polymerization into Montmorillonite Clay: A Spectroscopic Investigation of the Intercalated Conducting Polymer, Macromolecules, 2004, vol. 37, no.25, pp. 9373–9385.

    Google Scholar 

  77. Wu, G., De Groot, D.C., Marcy, H.O., et al., Reaction of Aniline with FeOCl. Formation and Ordering of Conducting Polyaniline in a Crystalline Layered Host, J. Am. Chem. Soc., 1995, vol. 117, no.36, pp. 9229–9242.

    CAS  Google Scholar 

  78. Oriakhi, C.O. and Lerner, M., Rapid and Quantitative Displacement of Poly(ethylene oxide) from MnPS3 and Other Layered Hosts, Chem. Mater., 1996, vol. 8, no.8, pp. 2016–2022.

    Article  CAS  Google Scholar 

  79. DeArmitt C. and Armes, S.P., Colloidal Dispersions of Surfactant-Stabilized Polypyrrole Particles, Langmuir, 1993, vol. 9, no.3, pp. 652–654.

    Article  CAS  ISI  Google Scholar 

  80. Liu, Yu.-Ju. and Kanatzidis, M.G., Postintercalative Polymerization of Aniline and Its Derivatives in Layered Metal Phosphates. Chem. Mater., 1995, vol. 7, no.8, pp. 1525–1533.

    Article  CAS  Google Scholar 

  81. Kerr, T.A., Wu, H., and Nazar, L.F., Concurrent Polymerization and Insertion of Aniline in Molybdenum Trioxide: Formation and Properties of a [Poly(aniline)]0.24MoO3 Nanocomposite, Chem. Mater., 1996, vol. 8, no.8, pp. 2005–2015.

    Article  CAS  Google Scholar 

  82. Supramolecular Architecture, ACS Symp. Ser., 1992, vol. 499.

  83. Feng, W., Sun, E., Fujii, A., et al., Synthesis and Characterization of Photoconducting Polyaniline-TiO2 Nanocomposite, Bull. Chem. Soc. Jpn., 2000, vol. 73, no.11, pp. 2627–2633.

    Article  CAS  Google Scholar 

  84. Clearfield, A., in Inorganic Ion Exchange Materials, Boca Raton: CRC, 1982.

    Google Scholar 

  85. Verissimo, C. and Alves, O.L., Preparation of the Conducting Nanocomposites Using Molded Inorganic Matrix: Fibrous Cerium(IV) Hydrogenphosphate as a Self-supported Pyrrole Polymerization Agent, J. Mater. Chem., 2003, vol. 13, no.6, pp. 1378–1383.

    CAS  Google Scholar 

  86. Ozin, G.A., Nanochemistry: Synthesis in Diminishing Dimensions, Adv. Mater., 1992, vol. 4, no.10, pp. 612–649.

    Article  CAS  Google Scholar 

  87. Porter, T.L., Hagerman, M.E., Reynolds, B.P., et al., Inorganic/Organic Host-Guest Materials: Surface and Reactions of Styrene with Copper(II)-Exchanged Hectorite, J. Polym. Sci., Part B: Polym. Phys., 1998, vol. 36, pp. 673–679.

    Article  CAS  Google Scholar 

  88. Wu, G., De Groot, D.C., Marcy, H.O., et al., Redox Intercalative Polymerization of Aniline in V2O5 Xerogel. The Postintercalative Intralamellar Polymer Growth in Polyaniline/Metal Oxide Nanocomposites Is Facilitated by Molecular Oxygen, Chem. Mater., 1996, vol. 8, no.8, pp. 1992–2004.

    Article  CAS  Google Scholar 

  89. Rolison, D.R. and Dunn, B., Electrically Conductive Oxide Aerogels: New Materials in Electrochemistry, J. Mater. Chem., 2001, vol. 11, no.4, pp. 963–980.

    Article  CAS  Google Scholar 

  90. Gapeev, A., Yang, C.N., Klippenstein, S.J., and Dunbar, R.C., Binding Energies of Gas-Phase Metal Ions with Pyrrole: Experimental and Quantum Chemical Results, J. Phys. Chem. A, 2000, vol. 104, no.14, pp. 3246–3256.

    Article  CAS  Google Scholar 

  91. Harreld, J., Dunn, B., and Nazar, L.F., Design and Synthesis of Inorganic-Organic Hybrid Microstructures, Int. J. Inorg. Mater., 1999, vol. 1, no.2, pp. 135–146.

    Article  CAS  Google Scholar 

  92. Shouji, E. and Buttry, D.A., New Organic-Inorganic Nanocomposite Materials for Energy Storage Applications, Langmuir, 1999, vol. 15, no.3, pp. 669–673.

    Article  CAS  ISI  Google Scholar 

  93. Parente, V., Fredriksson, C., Selmani, A., et al., Theoretical Characterization of the Vibrational Properties at the Aluminium/trans-Polyacetylene Interface, J. Phys. Chem. B, 1997, vol. 101, no.21, pp. 4193–4202.

    CAS  Google Scholar 

  94. Gomes-Romero, P. and Lira-Cantu, M., Adv. Mater., 1997, vol. 9, no.2, pp. 144–146.

    Google Scholar 

  95. Lira-Cantu, M. and Gomez-Romero, P., Electrochemical and Chemical Syntheses of the Hybrid Organic-Inorganic Electroactive Material Formed by Phosphomolybdate and Polyaniline. Application as Cation-Insertion Electrodes, Chem. Mater., 1998, vol. 10, no.3, pp. 698–704.

    Article  CAS  Google Scholar 

  96. Murakoshi, K., Kogure, R., Wada, Y., and Yanagida, S., Solid State Dye-Sensitized TiO2 Solar Cell with Polypyrrole as Hole Transport Layer, Chem. Lett., 1997, pp. 471–472.

  97. Marinakos, S.M., Brousseau, L.C. III, Jones, A., and Feldheim, D.L., Template Synthesis of One-Dimensional Au, Au-Poly(pyrrole), and Poly(pyrrole) Nanoparticle Arrays, Chem. Mater., 1998, vol. 10, no.5, pp. 1214–1219.

    Article  CAS  Google Scholar 

  98. Lakshmi, B.B., Patrissi, C.J., and Martin, C.R., Sol-Gel Template Synthesis of Semiconductor Oxide Micro-and Nanostructures, Chem. Matter, 1997, vol. 9, no.11, pp. 2544–2550.

    CAS  Google Scholar 

  99. Chemical Vapor Deposition, Hitchman, M.L. and Jensen, K.F., Eds., San Diego: Academic, 1993.

    Google Scholar 

  100. Ishida, H., Campbell, S., and Blackwell, J., General Approach to Nanocomposite Preparation, Chem. Mater., 2000, vol. 12, no.12, pp. 1260–1267.

    CAS  Google Scholar 

  101. Tarasov, K.A., Isupov, V.P., Bokhonov, B.V., et al., A New Process for the Preparation of Composites Containing Transition-Metal Nanoparticles, Khim. Interesakh Ustoich. Razvit., 2000, vol. 8, no.1/2, pp. 291–296.

    CAS  Google Scholar 

  102. Zhang, L. and Wan, M., Polyaniline/TiO2 Composite Nanotubes, J. Phys. Chem. B, 2003, vol. 107, pp. 6748–6753.

    CAS  Google Scholar 

  103. Lakhwani, S. and Rahaman, M.N., Adsorption of Polyvinylpyrrolidone (PVP) and Its Effect on the Consolidation of Suspension of Nanocrystalline CeO2 Particles, J. Mater. Sci., 1999, vol. 34, pp. 3909–3912.

    Article  CAS  Google Scholar 

  104. Golubeva, O.Yu., Korytkova, E.N., and Gusarov, V.V., Hydrothermal Synthesis of Magnesium Silicate Montmorillonite for Polymer-Inorganic Nanocomposites, Zh. Prikl. Khim. (S.-Peterburg), 2005, vol. 78, no.1, p. 28.

    Google Scholar 

  105. Vaia, R.A., Jandt, K.D., Kramer, E.J., and Giannelis, E.P., Microstructural Evolution of Melt Intercalated Polymer-Organically Modified Layered Silicates Nanocomposites, Chem. Mater., 1996, vol. 8, no.11, pp. 2628–2635.

    Article  CAS  Google Scholar 

  106. Vaia, R.A., Vasudevan, S., Krawiec, W., et al., New Polymer Electrolyte Nanocomposites—Melt Intercalation of Poly(ethylene oxide) in Mica-Type Silicates, Adv. Mater., 1995, vol. 7, no.2, pp. 154–156.

    Article  CAS  Google Scholar 

  107. Vaia, R.A., Jandt, K.D., Kramer, E.J., and Giannelis, E.P., Kinetics of Polymer Melt Intercalation, Macromolecules, 1995, vol. 28, no.24, pp. 8080–8085.

    Article  CAS  ISI  Google Scholar 

  108. Giannelis, E.P., Polymer Layered Silicate Nanocomposites, Adv. Mater., 1996, vol. 8, no.1, pp. 29–35.

    Article  CAS  Google Scholar 

  109. Chang, J.-H., An, Y.U., Kim, S.J., and Im, S., Poly(butylene terephthalate)/Organoclay Nanocomposites Prepared by In Situ Interlayer Polymerization and Its Fiber (II), Polymer, 2003, vol. 44, no.19, pp. 5655–5661.

    Article  CAS  ISI  Google Scholar 

  110. Interfaces in Polymer, Ceramic, and Metal Matrix Composites, Ishida, H., Ed., New York: Elsevier, 1988.

    Google Scholar 

  111. Fujinami, T., Sugie, K., Mori, K., and Mehta, M.A., New Inorganic-Organic Hybrid Li+-Ion Conducting Polymer Electrolytes, Chem. Lett., 1998, no. 7, pp. 619–620.

  112. Xu, H.Y., Kuo, S.W., Lee, J.S., and Chang, F.C., Preparations, Thermal Properties, and Tg Increase Mechanism of Inorganic/Organic Hybrid Polymers Based on Polyhedral Oligomeric Silsesquioxanes, Macromolecules, 2002, vol. 35, no.23, pp. 8788–8793.

    CAS  ISI  Google Scholar 

  113. Fornes, T.D., Yoon, P.J., Hunter, D.L., et al., Effect of Organoclay Structure on Nylon 6 Nanocomposite Morphology and Properties, Polymer, 2002, vol. 43, no.22, pp. 5915–5933.

    Article  CAS  ISI  Google Scholar 

  114. Whittingham, S.M. and Jacobson, A.J., Intercalation Chemistry, New York: Academic, 1982.

    Google Scholar 

  115. Mikitaev, A.K., Kaladzhyan, A.A., Lednev, O.B., and Mikitaev, M.A., Organoclay-Based Nanocomposite Polymer Materials, Plast. Massy, 2004, no. 12, pp. 45–50.

  116. Binette, M.-J. and Detellier, C., Lamellar Polysilicate Nanocomposite Materials: Intercalation of Polyethylene Glycols into Protonated Magadiite, Can. J. Chem., 2002, vol. 80, pp. 1708–1714.

    Article  CAS  Google Scholar 

  117. Liu, Y., De Groot, D., Schindler, J., et al., Intercalation of Water-Soluble Polymers in V2O5 Xerogel, Adv. Mater., 1993, vol. 5, no.5, pp. 369–372.

    Article  CAS  Google Scholar 

  118. Liu, Y.-J., Schindler, J.L., De Groot, D.C., et al., Synthesis, Structure, and Reactions of Poly(ethylene oxide)/V2O5 Intercalative Nanocomposites, Chem. Mater., 1996, vol. 8, no.2, pp. 525–534.

    Article  CAS  Google Scholar 

  119. Ohtake, T., Takamitsu, Y., Ito-Akita, K., et al., Liquid-Crystalline Ion-Conductive Materials: Self-organization Behavior and Ion-Transporting Properties of Mesogenic Dimers Containing Oxyethylene Moieties Complexed with Metal Salts, Macromolecules, 2000, vol. 33, no.21, pp. 8109–8111.

    Article  CAS  ISI  Google Scholar 

  120. Grady, B.P., Rhodes, C.P., York, S., and Frech, R.E., Effect of Temperature on Local Structure in Poly(ethylene oxide)-Zinc Bromide Salt Complexes, Macromolecules, 2001, vol. 34, no.24, pp. 8523–8531.

    Article  CAS  ISI  Google Scholar 

  121. Opara-Krasovec, U., Jese, R., Orel, B., and Drazic, G., Structural, Vibrational, and Gasochromic Properties of Porous WO3 Films Templated with a Sol-Gel Organic-Inorganic Hybrid, Monatsh. Chem., 2002, vol. 133, pp. 1115–1133.

    CAS  Google Scholar 

  122. Croce, F., Appetecchi, G.B., Persi, L., and Scrosati, B., Nanocomposite Polymer Electrolytes for Lithium Batteries, Nature, 1998, vol. 394, no.6692, pp. 456–458.

    CAS  ISI  Google Scholar 

  123. De Paul, S.M., Zwanziger, J.W., Ulrich, R., et al., Structure, Mobility, and Interface Characterization of Self-organized Organic-Inorganic Hybrid Materials by Solid-State NMR, J. Am. Chem. Soc., 1999, vol. 121, no.24, pp. 5727–5736.

    Google Scholar 

  124. Krug, H. and Schmidt, H., Organic-Inorganic Nanocomposites for Micro Optical Applications, New J. Chem., 1994, vol. 18, no.10, pp. 1125–1134.

    CAS  Google Scholar 

  125. Kotel'nikova, N.E., Vegner, G., Paakari, T., et al., Silver Intercalation into Cellulose Studied by X-ray Diffraction, Solid-State 13C NMR, IR Spectroscopy, X-ray Photoelectron Spectroscopy, and Raman Scattering, Zh. Obshch. Khim., 2003, vol. 73, no.3, pp. 447–455.

    Google Scholar 

  126. Wang, L., Brazis, P., Rocci, M., et al., A New Redox Host for Intercalative Polymerization: Insertion of Polyaniline into α-RuCl3, Chem. Mater., 1998, vol. 10, no.11, pp. 3298–3300.

    Article  CAS  Google Scholar 

  127. Wang, L., Rocci-Lane, M., Brazis, P., et al., α-RuCl3/Polymer Nanocomposites: The First Group of Intercalative Nanocomposites with Transition Metal Halides, J. Am. Chem. Soc., 2000, vol. 122, no.28, pp. 6629–6640.

    Article  CAS  Google Scholar 

  128. Ramesh, S., Koltypin, Y., Prosorov, R., and Gedanken, A., Sonochemical Deposition and Characterization of Nanophasic Amorphous Nickel on Silica Microspheres, Chem. Mater., 1997, vol. 9, no.9, pp. 546–551.

    CAS  Google Scholar 

  129. Yamamoto, S., Matsuoka, O., and Sugiyama, S., Microrings of Manganese Dioxide Nanocrystals on Mica, Chem. Lett., 1998, pp. 809–810.

  130. Fendler, J.H. and Meldrum, F.C., The Colloid Chemical Approach to Nanostructured Materials, Adv. Mater., 1995, vol. 7, no.7, pp. 607–632.

    Article  CAS  Google Scholar 

  131. Kleinfeld, E.R. and Ferguson, G.S., Rapid, Reversible Sorption of Water from the Vapor by a Multilayered Composite Film: A Nanostructured Humidity Sensor, Chem. Mater., 1995, vol. 7, no.12, pp. 2327–2331.

    Article  CAS  Google Scholar 

  132. Freeman, R.G., Grabar, K.C., Allison, K.J., et al., Self-assembled Metal Colloid Monolayers: An Approach to SERS Substrates, Science, 1995, vol. 267, pp. 1629–1632.

    CAS  ISI  Google Scholar 

  133. Kotov, N.A., Haraszti, T., Turi, L., et al., Mechanism of and Defect Formation in the Self-assembly of Polymeric Polycation-Montmorillonite Ultrathin Films, J. Am. Chem. Soc., 1997, vol. 119, no.29, pp. 6821–6832.

    Article  CAS  Google Scholar 

  134. Fine Particles Science and Technology from Micro to Nanoparticles, Pelizetti, E., Ed., Dordrecht: Kluwer, 1996.

    Google Scholar 

  135. Liu, Y., Wang, A., and Claus, R., Molecular Self-assembly of TiO2/Polymer Nanocomposite Films, J. Phys. Chem. B, 1997, vol. 101, no.8, pp. 1385–1388.

    CAS  Google Scholar 

  136. Quarmyne, M. and Chen, W., General Approach for the Preparation of Nanoscale Inorganic Layers on Polymeric Materials Surfaces, Langmuir, 2003, vol. 19, no.7, pp. 2533–2535.

    Article  CAS  ISI  Google Scholar 

  137. Cochin, D., Passmann, M., Wilbert, G., et al., Layered Nanostructures with LC-Polymers, Polyelectrolytes, and Inorganic, Macromolecules, 1997, vol. 30, no.16, pp. 4775–4779.

    Article  CAS  ISI  Google Scholar 

  138. Vol'pin, M.E., Novikov, Yu.N., Lapkina, N.D., et al., Lamellar Compounds of Graphite with Transition Metals. Graphite as a Ligand, J. Am. Chem. Soc., 1975, vol. 97, no.12, pp. 3366–3373.

    Article  Google Scholar 

  139. Solozhenko, V.L., Arkhangel'skii, I.V., Gas'kov, A.M., et al., Physicochemical Characterization of Reduction Products of Layered Graphite Compounds with Sn(IV) and Ti(IV) Chlorides, Zh. Fiz. Khim., 1983, vol. 57, no.9, pp. 2265–2269.

    CAS  Google Scholar 

  140. Tjong, S.C. and Meng, Y.Z., Properties and Morphology of Polyamide 6 Hybrid Composites Containing Potassium Titanate Whisker and Liquid Crystalline Copolyester, Polymer, 1999, vol. 40, no.5, pp. 1109–1117.

    Article  CAS  ISI  Google Scholar 

  141. Dennis, H.R., Hunter, D.L., Chang, D., et al., Effect of Melt Processing Conditions on the Extent of Exfoliation in Organoclay-Based Nanocomposites, Polymer, 2001, vol. 42, no.23, pp. 9513–9522.

    Article  CAS  ISI  Google Scholar 

  142. Lomakin, S.M. and Zaikov, G.E., Modern Polymer Flame Retardancy, Utrecht: VSP Int. Sci., 2003.

    Google Scholar 

  143. Hu, K., Brust, M., and Bard, A.J., Characterization and Surface Charge Measurement of Self-assembled CdS Nanoparticle Films, Chem. Mater., 1998, vol. 10, no.4, pp. 1160–1165.

    Article  CAS  Google Scholar 

  144. Stipkala, J.M., Castellano, F.N., Heimer, T.A., et al., Light-Induced Charge Separation at Sensitized Sol-Gel Processed Semiconductors, Chem. Mater., 1997, vol. 9, no.11, pp. 2341–2353.

    Article  CAS  Google Scholar 

  145. Chen, S. and Kimura, K., A New Strategy for the Synthesis of Semiconductor-Metal Hybrid Nanocomposites: Electrostatic Self-assembly of Nanoparticles, Chem. Lett., 1999, pp. 233–234.

  146. Nath, M. and Rao, C.N.R., New Metal Disulfide Nanotubes, J. Am. Chem. Soc., 2001, vol. 123, no.20, pp. 4841–4842.

    Article  CAS  Google Scholar 

  147. Tsai, H.-L., Schindler, J.L., Kannewurf, R., and Kanatzidis, M.G., Plastic Superconducting Polymer-NbSe2 Nanocomposites, Chem. Mater., 1997, vol. 9, no.4, pp. 875–878.

    CAS  Google Scholar 

  148. Pham, M.T., Moller, D., Matz, W., and Mucklich, A., CdS Nanocrystals Entrapped in Thin SiO2 Films, J. Phys. Chem. B, 1998, vol. 102, pp. 4081–4088.

    Article  CAS  Google Scholar 

  149. Kanatzidis, M.G., Bissessur, R., De Groot, D.C., et al., New Intercalation Compounds of Conjugated Polymers. Encapsulation of Polyaniline in Molybdenum Disulfide. Chem. Mater., 1993, vol. 5, no.5, pp. 595–596.

    Article  CAS  Google Scholar 

  150. Hanaoka, T., Tago, T., and Wakabayashi, K., Size Control of Metastable ZnS Particles in W/O Microemulsion, Bull. Chem. Soc. Jpn., 2001, vol. 74, no.7, pp. 1349–1354.

    Article  CAS  Google Scholar 

  151. Sun, Y., Hao, E., Zhang, X., et al., Monolayer of TiO2/PbS Coupled Semiconductor Nanoparticles, Chem. Commun., 1996, no. 19, pp. 2381–2382.

  152. Atta, A.K., Biswas, P.K., and Ganguli, D., CdS-Nanoparticles in Gel Film Network: Synthesis, Stability, and Properties, Polymer and Other Advanced Materials: Emerging Technologies and Business Opportunities, Prasad, P.N. et al., Eds., New York: Plenum, 1995, p. 645.

    Google Scholar 

  153. Volkov, A.V., Moskvina, M.A., Zezin, S.B., et al., Effect of the Polymer Matrix on the Structure of Nanocomposites with Cadmium Sulfide, Vysokomol. Soedin., Ser. A, 2003, vol. 45, pp. 283–291.

    CAS  Google Scholar 

  154. Moller, M., Inorganic Nanoclusters in Organic Glasses—Novel Materials for Electro-optical Applications, Synth. Met., 1991, vols. 41–43, pp. 1159–1162.

    Google Scholar 

  155. Zhao, H., Douglas, E.P., Harrison, B.S., and Schanze, K.S., Preparation of CdS Nanoparticles in Salt-Induced Block Copolymer Micelles, Langmuir, 2001, vol. 17, no.26, pp. 8428–8433.

    Article  CAS  ISI  Google Scholar 

  156. Wang, J., Montville, D., and Gonsalves, K.E., Synthesis of Polycarbonate-co-Poly(p-ethylphenol) and CdS Nanocomposites, J. Appl. Polym. Sci., 1999, vol. 72, pp. 1851–1868.

    CAS  Google Scholar 

  157. Zeng, J.-H., Yang, J., Zhu, Y., et al., Nanocomposite of CdS Particles in Polymer Rods Fabricated by a Novel Hydrothermal Polymerization and Simultaneous Sulfidation Technique, Chem. Commun., 2001, no. 15, pp. 1332–1333.

  158. Zhou, Y., Hao, L., Hu, Y., et al., The Fabrication of CuInSe2-Polyacrylamide Nanocomposites by a Convenient Simultaneous Polymerization-Decomposition Technique, Chem. Lett., 2001, pp. 136–137.

  159. Gaponic, N., Radtchenko, I.L., Sukhorukov, G.B., et al., Encoding Combinatorial Libraries: Charge-Driven Microencapsulation of Semiconductor Nanocrystals Luminescing in the Visible and Near IR, Adv. Mater., 2002, vol. 14, no.12, pp. 879–882.

    Google Scholar 

  160. Nanoparticles in Amorphous Solids and Their Nonlinear Properties, Advances and Applications, NATO ASI Ser., Ser. B, 1994, vol. 399.

  161. Potapova, I., Mruk, R., Prehl, S., et al., Semiconductor Nanocrystals with Multifunctional Polymer Ligands, J. Am. Chem. Soc., 2003, vol. 125, no.2, pp. 320–321.

    Article  CAS  Google Scholar 

  162. Huang, J., Yang, Y., Yang, B., et al., Preparation and Characterization of Cu2S/CdS/ZnS Nanocomposite in Polymeric Network, Polym. Bull., 1996, vol. 37, no.12, pp. 679–682.

    CAS  Google Scholar 

  163. Zelner, M., Minti, H., Reisfeld, R., et al., Preparation and Characterization of CdS Films Synthesized In Situ in Zirconia Sol-Gel Matrix, Chem. Mater., 1997, vol. 9, no.11, pp. 2541–2543.

    Article  CAS  Google Scholar 

  164. Volkov, A.V., Moskvina, M.A., Volynskii, A.L., and Bakeev, N.F., Formation Mechanism and Structure of Polymer Nanocomposites with Cadmium and Copper Sulfides, Vysokomol. Soedin., Ser. A., 1999, vol. 41, no.6, pp. 963–969.

    CAS  Google Scholar 

  165. Volkov, A.V., Moskvina, M.A., Volynskii, A.L., and Bakeev, N.F., Formation Mechanism of CuS Nanoparticles during In Situ Reactions in Poly(acrylic acid)-Poly(vinyl alcohol) Matrices, Vysokomol. Soedin., Ser. A, 1998, vol. 40, pp. 1441–1450.

    CAS  Google Scholar 

  166. Gao, M., Richter, B., Kirstein, S., and Mohwald, H., Electroluminescence Studies on Self-assembled Films of PPV and CdSe Nanoparticles, J. Phys. Chem. B, 1998, vol. 102, pp. 4096–4103.

    CAS  Google Scholar 

  167. Gao, M., Richter, B., Kirstein, S., and Mohwald, H., Electroluminescence Studies on Self-assembled Films of PPV and CdSe Nanoparticles, Phys. Chem. B, 1998, vol. 102, pp. 4096–4103.

    CAS  Google Scholar 

  168. Cassagneau, T., Mallouk, T.E., and Fendler, J.H., Layer-by-Layer Assembly of Thin Film Zener Diodes from Conducting Polymers and CdSe Nanoparticles, J. Am. Chem. Soc., 1998, vol. 120, no.31, pp. 7848–7859.

    Article  CAS  Google Scholar 

  169. Yang, Y., Liu, S., Huang, J., et al., Electroluminescence from ZnS/CdS Nanocrystals/Polymer Composite, Synth. Met., 1997, vol. 91, no.1, pp. 3347–3349.

    Google Scholar 

  170. Cheng, B., Jiang, W.Q., Zhu, Y.R., and Chen, Z.Y., Preparation of ZnS-PSA Nanocomposites by In Situ Simultaneous Polymerization-Precipitation of ZnS Nanoparticles Using Gamma-Radiation, Chem. Lett., 1999, no. 9, pp. 935–936.

  171. Moffitt, M., McMahon, L., Pessel, V., and Eisenberg, A., Size Control of Nanoparticles in Semiconductor-Polymer Composites: 2. Control via Sizes of Spherical Ionic Microdomains in Styrene-Based Diblock Ionomers, Chem. Mater., 1995, vol. 7, no.6, pp. 1185–1192.

    CAS  Google Scholar 

  172. Lemon, B.I. and Crooks, R.M., Preparation and Characterization of Dendrimer-Encapsulated CdS Semiconductor Quantum Dots, J. Am. Chem. Soc., 2000, vol. 122, no.51, pp. 12886–12887.

    Article  CAS  Google Scholar 

  173. Lakowicz, J.R., Gryczynski, I., Gryczynski, Z., and Murphy, C.J., Luminescence Spectral Properties of CdS Nanoparticles, J. Phys. Chem. B, 1999, vol. 103, pp. 7613–7620.

    Article  CAS  Google Scholar 

  174. Yang, J., Lin, H., He, Q., et al., Composition of Hyperbranched Conjugated Polymers with Nanosized Cadmium Sulfide Particles, Langmuir, 2001, vol. 17, no.19, pp. 5978–5983.

    CAS  ISI  Google Scholar 

  175. Winiarz, J.G., Zhang, L., Lal, M., et al., Observation of the Photorefractive Effect in a Hybrid Organic-Inorganic Nanocomposite, J. Am. Chem. Soc., 1999, vol. 121, no.22, pp. 5287–5295.

    Article  CAS  Google Scholar 

  176. Winiarz, J.G., Zhang, L., Park, J., and Prasad, P.N., Inorganic: Organic Hybrid Nanocomposites for Photorefractivity at Communication Wavelengths, J. Phys. Chem. B, 2002, vol. 106, pp. 967–970.

    Article  CAS  Google Scholar 

  177. Zeng, Z., Wang, S., and Yang, S., Synthesis and Characterization of PbS Nanocrystallites in Random Copolymer Ionomers, Chem. Mater., 1999, vol. 11, no.11, pp. 3365–3369.

    Article  CAS  Google Scholar 

  178. Qiao, Z., Xie, Y., Chen, M., et al., Synthesis of Lead Sulfide/(Polyvinyl Acetate) Nanocomposites with Controllable Morphology, Chem. Phys. Lett., 2000, vol. 321, pp. 504–507.

    Article  CAS  Google Scholar 

  179. Nikolaeva, E.V., Ozerin, S.A., Grigoriev, A.E., et al., Formation, Structure, and Photoelectrical Properties of Poly-p-xylylene-PbS Semiconductor Nanocomposite Films, Mater. Sci. Eng., C, 1999, vol. 8/9, pp. 217–223.

    Article  Google Scholar 

  180. Sengupta, A., Jiang, B., Mandal, K.C., and Zhang, J.Z., Ultrafast Electronic Relaxation Dynamics in PbI2 Semiconductor Colloidal Nanoparticles: A Femtosecond Transient Absorption Study, J. Phys. Chem. B, 1999, vol. 103, no.6, pp. 3128–3137.

    Article  CAS  Google Scholar 

  181. Manna, L., Scher, E.C., Li, L.-S., and Alivisatos, A.P., Epitaxial Growth and Photochemical Annealing of Graded CdS/ZnS Shells on Colloidal CdSe Nanorods, J. Am. Chem. Soc., 2002, vol. 124, no.24, pp. 7136–7145.

    Article  CAS  Google Scholar 

  182. Guo, W., Li, J.J., Wang, Y.A., and Peng, X., Luminescent CdSe/CdS Core/Shell Nanocrystals in Dendron Boxes: Superior Chemical, Photochemical, and Thermal Stability, J. Am. Chem. Soc., 2003, vol. 125, no.13, pp. 3901–3909.

    Article  CAS  Google Scholar 

  183. Yang, Q., Tang, K., Wang, C., et al., PVA-Assisted Synthesis and Characterization of CdSe and CdTe Nanowires, J. Phys. Chem. B, 2002, vol. 106, no.36, pp. 9227–9230.

    Article  CAS  Google Scholar 

  184. Golden, J.H., Di Salvo, F.J., Frechet, J.M., et al., Subnanometer-Diameter Wires Isolated in a Polymer Matrix by Fast Polymerization, Science, 1996, vol. 273, pp. 782–784.

    CAS  ISI  Google Scholar 

  185. Int. Symp. Nanocomposite 2005: Commercial Application, Business Opportunities, Technical Breakthroughs, Scientific Discoveries, San Francisco, 2005.

  186. Li, L., Beniash, E., Zubarev, E.R., et al., Assembling a Lasing Hybrid Material with Supramolecular Polymers and Nanocrystals, Nat. Mater., 2003, vol. 2, no.10, pp. 689–694.

    Article  CAS  Google Scholar 

  187. De Namor, A.F.D., Cleverley, R.M., and Zapata-Ormachea, M.L., Thermodynamics of Calixarene Chemistry, Chem. Rev., 1998, vol. 98, no.7, pp. 2495–2526.

    Google Scholar 

  188. Wragg, D.S., Hix, G.B., and Morris, R.E., Azamacrocycle-Containing Gallium Phosphates: A New Class of Inorganic-Organic Hybrid Material, J. Am. Chem. Soc., 1998, vol. 120, no.27, pp. 6822–6823.

    Article  CAS  Google Scholar 

  189. Neoh, K.G., Tan, K.K., Goh, P.L., et al., Electroactive Polymer-SiO2 Nanocomposites for Metal Uptake, Polymer, 1999, vol. 40, no.4, pp. 887–893.

    Article  CAS  ISI  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text Copyright © 2005 by Pomogailo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pomogailo, A.D. Hybrid Intercalative Nanocomposites. Inorg Mater 41 (Suppl 1), S47–S74 (2005). https://doi.org/10.1007/s10789-005-0318-3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10789-005-0318-3

Keywords

Navigation