Skip to main content
Log in

Operational aspects of satellite-based energy balance models for irrigated crops in the semi-arid U.S.

  • Published:
Irrigation and Drainage Systems

Abstract

SEBAL and METRIC remote sensing energy-balance based evapotranspiration (ET) models have been applied in the western United States. ET predicted by the models was compared to lysimeter-measured ET in agricultural settings. The ET comparison studies showed that the ET estimated by the remote sensing models corresponded well with lysimeter-measured ET for agricultural crops in the semi-arid climates. Sensitivity analyses on impacts of atmospheric correction for surface temperature and albedo showed that the internal calibration procedures incorporated in the models helped compensate for errors in temperature and albedo estimation. A repeatability test by two totally independent model applications using different images, operators and weather datasets showed that seasonal estimations by the models have high repeatability (i.e. stable results over ranges in satellite image timing, operator preferences and weather datasets). These results imply that the SEBAL/METRIC remote sensing models have a high potential for successful ET estimation in the semi-arid United States.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abreu, L.W. & Anderson, G.P. (ed). 1996. The MODTRAN 2/3 Report and LOWTRAN 7 MODEL. Ontar Corporation, North Andover, MA, USA.

  • Allen, R.G. 1996. Assessing integrity of weather data for use in reference evapotranspiration estimation. Journal of Irrigation and Drainage Engineering, ASCE 122(2): 97–106.

    Google Scholar 

  • Allen, R.G., Morse, A. & Tasumi, M. 2003. Application of SEBAL for western US water rights regulation and planning. Proceedings of the International Workshop on Use of Remote Sensing of Crop Evapotranspiration for Large Regions. 54th IEC Meeting of the International Commission on Irrigation and Drainage (ICID), Montpellier, France, Sept. 2003, 13p.

  • Allen, R.G., Morse, A., Tasumi, M., Trezza, R., Bastiaanssen, W.G.M., Wright, J.L. & Kramber, W. 2002. Evapotranspiration from a satellite-based surface energy balance for the Snake River Plain Aquifer in Idaho. Proceedings of the USCID Conference, San Luis Obispo, CA, USA, July 2002.

  • Allen, R.G., Pereira, L.S., Raes, D. & Smith, M. 1998. Crop Evapotranspiration. FAO Irrigation and Drainage Paper 56, FAO, Rome.

  • Allen, R.G., Tasumi, T., Morse, A. & Trezza, R. 2005. A landsat-based energy balance and evapotranspiration model in western US water rights regulation and planning. Journal of Irrigation and Drainage System (this issue).

  • ASCE-EWRI. 2005. The ASCE Standardised Reference Evapotranspiration Equation. Environmental and Water Resources Institute of the ASCE, Report by the Task Committee on Standardisation of Reference Evapotranspiration, < http://www.kimberly.uidaho.edu/water/asceewri/>

  • Bastiaanseen, W.G.M. 2000. SEBAL-based sensible and latent heat fluxes in the irrigated Gediz Basin, Turkey. Journal of Hydrology 229: 87–100.

    Google Scholar 

  • Bastiaanssen, W.G.M. & Bos, M.G. 1999. Irrigation performance indicators based on remotely sensed data: A review of literature. Irrigation and Drainage Systems 13: 291–311.

    Article  Google Scholar 

  • Bastiaanssen, W.G.M., Menenti, M., Feddes, R.A. & Holtslag, A.A.M. 1998a. A remote sensing surface energy balance algorithm for land (SEBAL): 1. Formulation. Journal of Hydrology 212–213: 198–212.

  • Bastiaanssen, W.G.M., Noordman, E.J.M., Pelgrum, H., Davids, G., Thoreson, B.P. & Allen, R.G. 2005. SEBAL model with remotely sensed data to improve water-resources management under actual field conditions. Journal of Irrigation and Drainage Engineering, ASCE 131(1): 85–93.

    Google Scholar 

  • Bastiaanssen, W.G.M., Pelgrum, H., Wang, J., Ma, Y., Moreno, J., Roerink, G.J. & van der Wal, T. 1998b. A remote sensing surface energy balance algorithm for land (SEBAL): 2 Validation. Journal of Hydrology 212–213: 213–229.

  • Brutsaert, W.H. & Sugita, M. 1992. Application of self-preservation in the Diurnal evolution of the surface energy budget to determine daily evaporation. Journal of Geophysical Research 97(D17): 18377–18382.

    Google Scholar 

  • Caselles, V., Artigao, M.M., Hurtado, E., Coll, C. & Brasa, A. 1998. Mapping actual evapotranspiration by combining landsat TM and NOAA-AVHRR images: Application to the barrax area, Albacete, Spain. Remote Sensing of Environment 63: 1–10.

    Article  Google Scholar 

  • Choudhury, B.J., Ahmed, N.U., Idso, S.B., Reginato, R.J. & Daughtry, C.S.T. 1994. Relations between evaporation coefficients and vegetation indices studies by model simulations. Remote Sensing of Environment 50: 1–17.

    Article  Google Scholar 

  • Crago, R.D. 1996. Comparison of the evaporative fraction and the Priestley–Taylor α for parameterizing daytime evaporation. Water Resources Research 32(5): 1403–1409.

    Article  Google Scholar 

  • Hemakumara, H.M., Chandrapala, L. & Moene, A.F. 2003. Evapotranspiration fluxes over mixed vegetation areas measured from large aperture scintillometer. Agricultural Water Management 58: 109–122.

    Article  Google Scholar 

  • Hill, R.W., Allen, L.N., Brockway, C.E., Robison, C.W., Allen, R.G. & Burman, R.D. 1989. Duty of Water Under the Bear River Compact: Field Verification of Empirical Methods for Estimating Depletion. Research report 125. Utah Agricultural Experiment Station, Utah State University, Logan, UT, USA.

  • Hunsaker, D.J., Pinter, P.J. Jr., Barnes, E.M. & Kimball, B.A. 2003. Estimating cotton evapotranspiration crop coefficients with a multispectral vegetation index. Irrigation Science 22(2): 95–104.

    Article  Google Scholar 

  • Kustas, W.P. & Norman, J.M. 1996. Use of remote sensing for evapotranspiration monitoring over land surfaces. Hydrological Sciences 41(4): 495–515.

    Article  Google Scholar 

  • Landsat 7 Science Data Users Handbook 2002. Landsat Project Science Office, NASA Goddard Space Flight Center in Greenbelt, MD, USA http://ltpwww.gsfc.nasa.gov/IAS/handbook/handbook_toc.html

  • Liang, S. 2000. Narrowband to broadband conversions of land surface albedo – I Algorithms. Remote Sensing of Environment 76: 213–238.

    Google Scholar 

  • Markham, B.L. & Barker, J.L. 1986. Landsat MSS and TM Post-Calibration Dynamic Ranges, Exoatmospheric Reflectances and At-Satellite Temperatures. EOSAT Landsat Technical Notes 1:3–8. Earth Observation Satellite Company, Lanham, MD, USA.

  • Moran, M.S., Clarke, T.R., Inoue, Y. & Vidal, A. 1994. Estimating crop water deficit using the relation between surface-air temperature and spectral vegetation index. Remote Sensing of Environment 49: 246–263.

    Article  Google Scholar 

  • Morse, A., Allen, R.G., Tasumi, M., Kramber, W.J., Trezza, R. & Wright, J.L. 2001. Application of the SEBAL Methodology for Estimating Evapotranspiration and Consumptive Use of Water Through Remote Sensing: Final Report. Idaho Department of Water Resources, ID, USA.

  • Morse, A., Tasumi, M., Allen, R.G. & Kramber, W.J. 2000. Application of the SEBAL Methodology for Estimating Consumptive Use of Water and Streamflow Depletion in the Bear River Basin of Idaho Through Remote Sensing: Final Report. Idaho Department of Water Resources, ID, USA.

  • Neale, C.M.U., Bausch, W.C. & Heerman, D.F. 1989. Development of reflectance-based crop coefficients for corn. Transactions of the ASAE 32(6): 1891–1899.

    Google Scholar 

  • Norman, J.M., Kustas, W.P. & Humes, K.S. 1995. Source approach for estimating soil and vegetation energy fluxes in observation of directional radiometric surface temperature. Agricultural and Forest Meteorology 77: 263–293.

    Google Scholar 

  • Norman, J.M., Kustas, W.P., Prueger, J.H. & Diak, G.R. 2000. Surface flux estimation using radiometric temperature: A dual-temperature-difference method to minimize measurement errors. Water Resources Research 36(8): 2263–2274.

    Article  Google Scholar 

  • Romero, M.G. 2004. Daily Evapotranspiration Estimation by Means of Evaporative Fraction and Reference Evapotranspiration Fraction. Draft of Ph.D. Dissertation Submitted to Utah State University, Logan, UT, USA, 175p.

  • Shuttleworth, W.J., Gurney, R.J., Hsu, A.Y. & Ormsby, J.P. 1989. The Variation in Energy Partition at Surface Flux Sites. Proceedings of the IAHS Thrid International Assembly, Baltimore, MD, USA.

  • Tasumi, M. 2003. Progress in Operational Estimation of Regional Evapotranspiration Using Satellite Imagery. Ph.D. Dissertation, University of Idaho, Moscow, ID, USA.

  • Tasumi, M., Allen, R.G. & Trezza, R. 2006. At-surface reflectance and albedo from satellite for operational calculation of land surface energy balance. Agricultural and Forest Meteorology (submitted).

  • Trezza, R. 2002. Evapotranspiration Using a Satellite-Based Surface Energy Balance With Standardized Ground Control. Ph.D. Dissertation, Utah State University, Logan, UT, USA.

  • Trezza, R., Allen, R.G., Tasumi, M. & Wright, J.L. 2003. Observed ET r F and EF values. Appendix 13, In: M. Tasumi 2003. Progress in operational estimation of regional evapotranspiration using satellite imagery. Ph.D. Dissertation, University of Idaho, Moscow, ID, USA.

  • Wright, J.L. 1982. New evapotranspiration crop coefficients. Journal of Irrigation and Drainage 108: 57–74.

    Google Scholar 

  • Wright, J.L. 1996. Derivation of Alfalfa and Grass Reference Evapotranspiration. In: C.R. Camp, E.J. Sadler & R.E. Yoder (eds.), Evapotranspiration and Irrigation Scheduling (pp 133–140). Proceedings of the International Conference, ASAE, San Antonio, TX, USA.

  • Wukelic, G.E., Gibbons, D.E., Martucci, L.M. & Foote, H.P. 1989. Radiometric calibration of Landsat thematic mapper thermal band. Remote Sensing of Environment 28: 339–347.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahiro Tasumi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tasumi, M., Trezza, R., Allen, R.G. et al. Operational aspects of satellite-based energy balance models for irrigated crops in the semi-arid U.S.. Irrig Drainage Syst 19, 355–376 (2005). https://doi.org/10.1007/s10795-005-8138-9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10795-005-8138-9

Key Words

Navigation