Skip to main content
Log in

Removal of drugs in aqueous systems by photoassisted degradation

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Aqueous solutions of tetracycline, lincomycin and ranitidine were irradiated with UV light in homogeneous and heterogeneous systems. Two commercial polycrystalline TiO2 powders (Degussa P25 and Merck) were used as photocatalysts. After 5 h, an appreciable photolytic degradation of tetracycline and ranitidine was observed while the degradation of lincomycin was noticeably lower. As far as the mineralization is concerned, a small decrease of the TOC values was measured in the case of tetracycline whereas negligible variations were found for lincomycin or ranitidine. The presence of the photocatalysts greatly enhanced the degradation rates of the drugs with respect to those observed during the homogeneous experiments. The Langmuir–Hinshelwood kinetic model adequately describes the experimental results and both the pseudo-first order kinetic constants of the reactions and the adsorption constants were calculated. Merck TiO2 was more active than P25 Degussa for the photodegradation of tetracycline and ranitidine, whereas both photocatalysts showed similar performances for lincomycin. In the presence of TiO2 Degussa P25, tetracycline was almost completely mineralized, but the reduction of the initial TOC was ca. 60% in the case of lincomycin and ranitidine. A less significant mineralization was observed by using Merck TiO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Halling-Sørensen S. Nors Nielsen P.F. Lanszky F. Ingerslev H.C. Holten Lützhaft S.E. Jørgensen (1998) Chemosphere 36 357

    Google Scholar 

  2. W. Forth D. Henschler W. Rummel K. Starke (1992) Allgemeine und spezielle Pharmakologie und Toxicologie EditionNumber6 Wissenschauftverlag Mannheim

    Google Scholar 

  3. M.L. Richardson J.M. Bowron (1987) J. Pharm. Pharmacol 37 1

    Google Scholar 

  4. R. Hirsch T.A. Ternes K. Haberer K.L. Kratz (1999) Sci. Total Environ 225 109 Occurrence Handle10.1016/S0048-9697(98)00337-4 Occurrence Handle1:CAS:528:DyaK1MXhsVKmtQ%3D%3D

    Article  CAS  Google Scholar 

  5. O.A.H. Jones N. Voulvoulis J.N. Lester (2002) Water Res 36 5013 Occurrence Handle10.1016/S0043-1354(02)00227-0 Occurrence Handle1:CAS:528:DC%2BD38XnvVekt7k%3D

    Article  CAS  Google Scholar 

  6. F. Stuer-Lauridsen M. Birkved L.P. Hansen H.C. Holten Lützhaft B. Halling-Sørensen (2000) Chemosphere 40 783 Occurrence Handle10.1016/S0045-6535(99)00453-1 Occurrence Handle1:CAS:528:DC%2BD3cXht1Clu7Y%3D

    Article  CAS  Google Scholar 

  7. J.H.B. Saunders R.J. Oliver D.L. Higson (1986) Br. Med. J 292 665 Occurrence Handle1:STN:280:BimC3s3lslQ%3D

    CAS  Google Scholar 

  8. M. Schiavello (Eds) (1988) Photocatalysis and Environment. Trends and Applications Kluwer Dordrecht

    Google Scholar 

  9. C. Gomes da Silva J.L. Faria (2003) J. Photochem. Photobiol. A: Chem 155 133 Occurrence Handle1:CAS:528:DC%2BD3sXhtVSjs70%3D

    CAS  Google Scholar 

  10. A. Di Paola, M. Addamo, V. Augugliaro, E. García-López, V. Loddo, G. Marcì and L. Palmisano, Fresenius Environ. Bull. 13 (2004) 1275.

  11. A.K. Davies, J.F. McKellar, G.O. Phillips and A.G. Reid, J. Chem. Soc. Perkin Trans. II (1979) 369

  12. J.J. Hlavka and P. Bitha, Tetrahedron Lett. (1996) 3843.

  13. S. Miskoski E. Sánchez M. Garavano M. López A.T. Soltermann N.A. Garcia (1998) J. Photochem. Photobiol. B: Biol 43 164 Occurrence Handle1:CAS:528:DyaK1cXjvFOhtLo%3D

    CAS  Google Scholar 

  14. J.A. Wiebe D.E. Moore (1977) J. Pharm. Sci 66 186 Occurrence Handle1:CAS:528:DyaE2sXht1Oiurg%3D

    CAS  Google Scholar 

  15. W.H.K. Sanniez N. Pilpel (1979) J. Pharm. Sci 69 5

    Google Scholar 

  16. T. Hasan M. Allen B.S. Cooperman (1985) J. Org. Chem 50 1755 Occurrence Handle10.1021/jo00210a038 Occurrence Handle1:CAS:528:DyaL2MXhslyktbo%3D

    Article  CAS  Google Scholar 

  17. H. Oka Y. Ikai N. Kawamura M. Yamada K. Harada S. Ito M. Suzuki (1989) J. Agric. Food Chem 37 226 Occurrence Handle10.1021/jf00085a052 Occurrence Handle1:CAS:528:DyaL1MXltlOksg%3D%3D

    Article  CAS  Google Scholar 

  18. M.M. Beliakova S.I. Bessanov B.M. Sergeyev I.G. Smirnova E.N. Dobrov A.M. Kopylov (2003) Biochemistry 68 182 Occurrence Handle1:CAS:528:DC%2BD3sXhsFKqs74%3D

    CAS  Google Scholar 

  19. U. Raschke G. Werner H. Wilde U. Stottmeister (1998) J. Photochem. Photobiol. A: Chem 115 191 Occurrence Handle10.1016/S1010-6030(98)00265-2 Occurrence Handle1:CAS:528:DyaK1cXjslGktLg%3D

    Article  CAS  Google Scholar 

  20. S. Pal P.N. Moza A. Kettrup (1991) J. Agric. Food Chem 39 797 Occurrence Handle10.1021/jf00004a037 Occurrence Handle1:CAS:528:DyaK3MXhsF2qsr4%3D

    Article  CAS  Google Scholar 

  21. V. Héquet C. Gonzales P. Le Cloirec (2001) Water Res 35 4253 Occurrence Handle10.1016/S0043-1354(01)00166-X

    Article  Google Scholar 

  22. Y. Sanlaville S. Guittoneau M. Mansour E.A. Feicht P. Meallier A. Kettrup (1996) Chemosphere 33 353 Occurrence Handle10.1016/0045-6535(96)00176-2 Occurrence Handle1:CAS:528:DyaK28Xkt1eltL8%3D

    Article  CAS  Google Scholar 

  23. M. Mirmehrabi S. Rohani K.S.K. Murthy B. Radatus (2004) Int. J. Pharm 282 73 Occurrence Handle10.1016/j.ijpharm.2004.05.031 Occurrence Handle1:CAS:528:DC%2BD2cXntVGhs7c%3D

    Article  CAS  Google Scholar 

  24. S. Pospíšil P. Sedmera P. Halada J. Spížek (2001) Folia Microbiol 46 376

    Google Scholar 

  25. S. Pospíšil P. Sedmera P. Halada L. Havlíček J. Spížek (2004) Tetrahedron Lett 45 2943

    Google Scholar 

  26. M. Vehabovic S. Hadzovic F. Stambolic A. Hadzic E. Vranjes E. Haracic (2003) Int. J. Pharm 256 109 Occurrence Handle10.1016/S0378-5173(03)00067-X Occurrence Handle1:CAS:528:DC%2BD3sXivVGjsbc%3D

    Article  CAS  Google Scholar 

  27. P.A. Haywood M. Martin-Smith T.J. Cholerton M.B. Evans (1987) J. Chem. Soc. Perkin Trans 1 951

    Google Scholar 

  28. E. Pelizzetti N. Serpone (Eds) (1988) Homogeneous and Heterogeneous Photocatalysis Reidel Dordrecht

    Google Scholar 

  29. S. Turchi D.F. Ollis (1990) J. Catal 122 178 Occurrence Handle10.1016/0021-9517(90)90269-P Occurrence Handle1:CAS:528:DyaK3cXitVOmurw%3D

    Article  CAS  Google Scholar 

  30. G. Liu T. Wu J. Zhao H. Idaka N. Serpone (1999) Environ. Sci. Technol 33 2081 Occurrence Handle1:CAS:528:DyaK1MXivVWnurk%3D

    CAS  Google Scholar 

  31. G. Liu X. Li J. Zhao H. Idaka N. Serpone (2000) Environ. Sci. Technol 34 3982 Occurrence Handle1:CAS:528:DC%2BD3cXlslSktro%3D

    CAS  Google Scholar 

  32. A. Bianco-Prevot C. Baiocchi M.C. Brussino E. Pramauro P. Savarino V. Augugliaro G. Marcì L. Palmisano (2001) Environ. Sci. Technol 35 971

    Google Scholar 

  33. E.W. Chung, E.N.M. Ho, D.K.K. Leung, F.P.W. Tang, K.C.H. Yiu and T.S.M. Wan, Chromatographia Supplement 59 (2004) S29.

  34. G. Martra (2000) Appl. Catal. A: Gen 200 275 Occurrence Handle10.1016/S0926-860X(00)00641-4 Occurrence Handle1:CAS:528:DC%2BD3cXls1Cku7g%3D

    Article  CAS  Google Scholar 

  35. G. Marcì M. Addamo V. Augugliaro S. Coluccia E. García-López V. Loddo G. Martra L. Palmisano M. Schiavello (2003) J. Photochem. Photobiol. A: Chem 160 105 Occurrence Handle10.1016/S1010-6030(03)00228-4

    Article  Google Scholar 

  36. P. Davit G. Martra S. Coluccia V. Augugliaro E. García-López V. Loddo G. Marcì L. Palmisano M. Schiavello (2003) J. Mol. Catal. A 204–205 693

    Google Scholar 

  37. G. Calvert J.N. Pitts SuffixJr (1967) Photochemistry Wiley New York

    Google Scholar 

  38. K. Okamoto Y. Yamamoto H. Tanaka A. Itaya (1985) Bull. Chem. Soc. Jpn 58 2023 Occurrence Handle1:CAS:528:DyaL2MXlsFSktro%3D

    CAS  Google Scholar 

  39. J.C. D’Oliveira G. Al-Sayyed P. Pichat (1990) Environ. Sci. Technol 24 990 Occurrence Handle1:CAS:528:DyaK3cXktFWrtL4%3D

    CAS  Google Scholar 

  40. C. Minero C. Aliberti E. Pelizzetti R. Terzian N. Serpone (1991) Langmuir 7 928 Occurrence Handle10.1021/la00053a020 Occurrence Handle1:CAS:528:DyaK3MXitlOns7k%3D

    Article  CAS  Google Scholar 

  41. V. Augugliaro L. Palmisano M. Schiavello A. Sclafani L. Marchese G. Martra F. Miano (1991) Appl. Catal 69 323 Occurrence Handle1:CAS:528:DyaK3MXhslCkur8%3D

    CAS  Google Scholar 

  42. K.H. Wang Y.S. Hsieh M.Y. Chou C.Y. Chang (1998) Appl. Catal. B 21 1

    Google Scholar 

  43. A. Di Paola V. Augugliaro L. Palmisano G. Pantaleo E. Savinov (2003) J. Photochem. Photobiol. A: Chem 155 207 Occurrence Handle10.1016/S1010-6030(02)00390-8 Occurrence Handle1:CAS:528:DC%2BD3sXhtVSjsL8%3D

    Article  CAS  Google Scholar 

  44. V. Augugliaro L. Palmisano A. Sclafani C. Minero E. Pelizzetti (1988) Toxicol. Environ. Chem 16 89 Occurrence Handle1:CAS:528:DyaL1cXht1WrsLw%3D

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Di Paola.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Addamo, M., Augugliaro, V., Paola, A.D. et al. Removal of drugs in aqueous systems by photoassisted degradation. J Appl Electrochem 35, 765–774 (2005). https://doi.org/10.1007/s10800-005-1630-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-005-1630-y

Key words:

Navigation