Skip to main content
Log in

Mo oxide modified catalysts for direct methanol, formaldehyde and formic acid fuel cells

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Pt black and PtRu black fuel cell anodes have been modified with Mo oxide and evaluated in direct methanol, formaldehyde and formic acid fuel cells. Mo oxide deposition by reductive electrodeposition from sodium molybdate or by spraying of the fuel cell anode with aqueous sodium molybdate resulted in similar performance gains in formaldehyde cells. At current densities below ca. 20 mA cm−2, cell voltages were 350–450 mV higher when the Pt catalyst was modified with Mo oxide, but these performance gains decreased sharply at higher current densities. For PtRu, voltage gains of up to 125 mV were observed. Modification of Pt and PtRu back catalysts with Mo oxide also significantly improved their activities in direct formic acid cells, but performances in direct methanol fuel cells were decreased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Lamy, J.M. Leger and S. Srinivasan, in Modern Aspects of Electrochemistry, 34 (2001) pp. 53–118

  2. 2. Wang J.T., Lin W.F., Weber M., Wasmus S., Savinell R.F., (1998) Electrochim. Acta 43:3821

    Article  CAS  Google Scholar 

  3. 3. Muller J.T., Urban P.M., Holderich W.F., Colbow K.M., Zhang J., Wilkinson D.P. (2000) J. Electrochem. Soc., 147:4058

    Article  CAS  Google Scholar 

  4. 4. Lamy C., Belgsir E.M., Leger J.M., (2001) J. Appl. Electrochem. 31: 799

    Article  CAS  Google Scholar 

  5. 5. Savadogo O., Yang X., (2001) J. Appl. Electrochem. 31:787

    Article  CAS  Google Scholar 

  6. 6. Qi Z.G., Hollett M., Attia A., Kaufman A., (2002) Electrochem. Solid State. Lett. 5:A129

    Article  CAS  Google Scholar 

  7. 7. Rice C., Ha R.I., Masel R.I., Waszczuk P., Wieckowski A., Barnard T., (2002) J. Power Sources 111:83

    Article  CAS  Google Scholar 

  8. 8. Shropshire J.A., (1965) J. Electrochem. Soc. 112:465

    Article  CAS  Google Scholar 

  9. 9. Olivi P., Bulhoes L.O.S., Leger J.-M., Hahn F., Beden B., Lamy C., (1994) J. electroanal. Chem. 370: 241

    Article  CAS  Google Scholar 

  10. 10. Nakabayashi S., Yagi I., Sugiyama N., Tamura K., Uosaki K. (1997) Surface Science 386: 82

    Article  CAS  Google Scholar 

  11. 11. ten Kortenaar M.V., Kolar Z.I., de Goeij J.J.M., Frens G., (2001) J. Electrochem. Soc. 148:E327

    Article  CAS  Google Scholar 

  12. 12. Rice C., Ha S., Masel R.I., Wieckowski A., (2003) J. Power Sources 115:229

    Article  CAS  Google Scholar 

  13. 13. Li W.S., Tian L.P., Huang Q.M., Li H., Chen H.Y., Lian X.P., (2002) J. Power Sources 104:281

    Article  CAS  Google Scholar 

  14. 14. Wang H.S., (2002) Acta Chimica Sinica 60:606

    CAS  Google Scholar 

  15. 15. Wang Y., Rachjini E.R., Cruz G., Zhu Y., Ishikawa Y., Colucci J.A., Cabrera C.R., (2001) J. Electrochem. Soc., 148:C222

    Article  CAS  Google Scholar 

  16. 16. Lee S.A., Park K.W., Choi J.H., Kwon B.K., Sung Y.E., (2002) J Electrochem. Soc. 149:A1299

    Article  CAS  Google Scholar 

  17. 17. Samjeske G., Wang H.S., Loffler T., Baltruschat H., (2002) Electrochim. Acta 47:3681

    Article  CAS  Google Scholar 

  18. 18. Ball S., Hodgkinson A., Hoogers G., Maniguet S., Thompsett D., Wong B., (2002) Electrochem. Solid. State. Lett. 5:A31

    Article  CAS  Google Scholar 

  19. 19. Anderson A.B., Grantscharova E., Seong S., (1996) J. Electrochem. Soc. 143:2075

    Article  CAS  Google Scholar 

  20. 20. Lima A., Coutanceau C., Leger J.M., Lamy C., (2001) J. Appl. Electrochem. 31:379

    Article  CAS  Google Scholar 

  21. 21. Song C., Pickup P.G., (2004) J. Appl. Electrochem. 34:1065

    Article  CAS  Google Scholar 

  22. 22. Ren X.M., Springer T.E., Zawodzinski T.A., Gottesfeld S., (2000) J. Electrochem. Soc. 147: 466

    Article  CAS  Google Scholar 

  23. 23. Rhee Y.W., Ha S.Y., Masel R.I., (2003) HGJGKHJG. J. Power Sources 117: 35

    Article  CAS  Google Scholar 

  24. 24. Housmans T.H.M., Koper M.T.M., (2003) J. Phys. Chem. B. 107:8557

    Article  CAS  Google Scholar 

  25. 25. Machida K., Enyo M., (1990) J. Electrochem. Soc. 137: 1169

    Article  CAS  Google Scholar 

  26. 26. Wang B., Dong S., (1994) J. Electroanal. Chem. 379: 207

    Article  Google Scholar 

  27. 27. Kosminsky L., Bertotti M., (1999) J. Electroanal. Chem. 471: 37

    Article  CAS  Google Scholar 

  28. 28. Mukerjee S., Urian R.C., (2002) Electrochim. Acta 47: 3219

    Article  CAS  Google Scholar 

  29. 29. Iwasita T., (2002) Electrochim. Acta 47: 3663

    Article  CAS  Google Scholar 

  30. 30. Wang X., Hu J.M., Hsing I.M., (2004) J. Electroanal. Chem. 562: 73

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by a Natural Sciences and Engineering Research Council of Canada (NSERC) Strategic Projects Grant, by Memorial University and by H Power Corp.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter G. Pickup.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, C., Khanfar, M. & Pickup, P.G. Mo oxide modified catalysts for direct methanol, formaldehyde and formic acid fuel cells. J Appl Electrochem 36, 339–345 (2006). https://doi.org/10.1007/s10800-005-9071-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-005-9071-1

Keywords

Navigation