Skip to main content

Advertisement

Log in

Straightforward energetic approach to studies of the corrosion behaviour of nano-copper thin-layer coatings

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

This paper presents a one-period energy method of studying the electrochemical corrosion phenomena that occur on metal surfaces. The method employs the energy state variables (time functions) to determine whether the material is susceptible to corrosion. The main feature of this approach is the elimination of the frequency analysis, and thereby gives significant simplifications of the corrosion rate measurement. Another important feature is that the method is based on an analysis of the appropriate loops on the energy phase plane which results in the corrosion process being easily estimated through the evaluation of the loop area. The physical results obtained by this method are easily interpretable with robust properties. The usefulness of the proposed technique was examined in microcrystalline and nanocrystalline copper layers deposited on a polycrystalline substrate by the electrocrystallization method. The quantitative results obtained from the measurements of the one-period energy loops are used for controlling the corrosion resistances of the micro- and nano-copper thin-layer coatings. Several experiments performed on real specimens verified the effictiveness of the method as used for analysing the electrochemical corrosion in many practical systems. We have shown that the corrosion resistance of the nanocrystalline copper layers is worse than that of microcrystalline copper layers even when the layers of the two types are produced by the same electrochemical method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kelly RG, Scully JR, Shoesmith DW, Buchheit RG (2002) Electrochemical techniques in corrosion science and engineering. Marcel Dekker, New York

    Google Scholar 

  2. Cha CS (2002) Introduction to kinetics of electrode processes, 3rd edn. Science Press, Bejing, pp 127–138

    Google Scholar 

  3. Brett C, Brett A (1993) Electrochemistry. OUP, Oxford

    Google Scholar 

  4. Welch CM, Simm AO, Compton RG (2006) Electroanalysis 18:965

    Article  CAS  Google Scholar 

  5. Tao D, Chen GL, Parekh BK (2007) J Appl Electrochem 37:187

    Article  CAS  Google Scholar 

  6. Cheng SC, Gattrell M, Guena T, Macdougall B (2006) J Appl Electrochem 36:1317

    Article  CAS  Google Scholar 

  7. Fletcher S (1994) J Electrochem Soc 141:18

    Article  Google Scholar 

  8. Darowicki K (1995) Electrochim Acta 40:439

    Article  CAS  Google Scholar 

  9. Kowalewska M, Trzaska M (2006) J Phys Chem Mech Mater 2(5):615

    Google Scholar 

  10. Trzaska M, Lisowski W (2005) Corros Prot 48:112

    Google Scholar 

  11. Wyszynska A, Trzaska M (2006) J Phys Chem Mech Mater 2(5):609

    Google Scholar 

  12. Birbilis N, Padgett BN, Buchheit RG (2005) Electrochim Acta 50:3536

    Article  CAS  Google Scholar 

  13. Barsoukov E, Macdonald JR (eds) (2005) Impedance spectroscopy; theory, experiment, and applications. Wiley Interscience Publications, New York

    Google Scholar 

  14. Macdoald JR (1990) Electrochim Acta 35:1483

    Article  Google Scholar 

  15. Bard AJ, Faulkner LR (2000) Electrochemical methods; fundamentals and applications. Wiley Interscience Publications, New York

    Google Scholar 

  16. Lapicque F, Storck A, Wragg AA (1995) Electrochemical engineering and energy. The language of science. Springer, New York

    Google Scholar 

  17. Dobbelaar JAL (1990) The use of impedance measurements in corrosion research; The corrosion behavior of chromium and iron chromium alloys, PhD thesis, Technical University, Delft

  18. Gabrielle C (1980) Identification of electrochemical processes by frequency response analysis. Solartron Instrumentation Group

  19. Wragg AA (1997) J Chem Eng 316:39

    Google Scholar 

  20. Mansfeld F (1990) Electrochim Acta 35:1533

    Article  CAS  Google Scholar 

  21. Boukamp BA (1986) Solid State Ionics 20:31

    Article  CAS  Google Scholar 

  22. Trzaska M (2006) Electrochemical impedance spectroscopy in corrosion studies of copper surface layers Proc VII Intern Workshop ‘Computational Problems of Electrical Engineering’, Odessa, Ukraine

  23. Shinohara K, Aogaki R (1999) Electrochem 67:126

    CAS  Google Scholar 

  24. Trzaska Z, Marszalek W (2006) Periodic solutions of DAEs with applications to dissipative electric circuits, Proc IASTED Conf Modelling, Identification and Control (MIC06), Lanzarote, Spain

  25. Trzaska Z (2004) Arch Elec Eng 53:191

    Google Scholar 

  26. Trzaska Z (2005) Arch Elec Eng 54: 265

    Google Scholar 

  27. Trzaska Z, Marszalek W (1993) IEE Proc PtD, Control Theory Appl 140:305

    Google Scholar 

  28. Trzaska Z, Marszalek W (2006) Arch Elec Eng 55:165

    Google Scholar 

  29. Farkas M (1994) Periodic motion. Springer-Verlag, New York

    Google Scholar 

  30. Chian HD, Chu CC, Cauley G (1995) Proc IEEE 831: 497

    Google Scholar 

  31. Chun-Lei T, Wu X-P (2004) Proc Amer Math Soc 132:1295

    Article  Google Scholar 

  32. Mhaskar HN, Prestin J (2000) Adv Comput Math 12:95

    Article  Google Scholar 

  33. Bartle RG, Sherbert D (1997) Introduction to Real Analysis, 2nd edn. Wiley, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Trzaska.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trzaska, M., Trzaska, Z. Straightforward energetic approach to studies of the corrosion behaviour of nano-copper thin-layer coatings. J Appl Electrochem 37, 1009–1014 (2007). https://doi.org/10.1007/s10800-007-9341-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-007-9341-1

Keywords

Navigation