Skip to main content

Advertisement

Log in

Chlor-alkali electrolysis with oxygen depolarized cathodes: history, present status and future prospects

  • Reviews in Applied Electrochemistry Number 66
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The historical development, current status and future prospects of chlor-alkali electrolysis with oxygen depolarized cathodes (ODCs) are summarized. Over the last decades, membrane chlor-alkali technology has been optimized to such an extent that no substantial reduction of the energy demand can be expected from further process modifications. However, replacement of the hydrogen evolving cathodes in the classical membrane cells by ODCs allows for reduction of the cell voltage and correspondingly the energy consumption of up to 30%. This replacement requires the development of appropriate cathode materials and novel electrolysis cell designs. Due to their superior long-term stability, ODCs based on silver catalysts are very promising for oxygen reduction in concentrated NaOH solutions. Finite-gap falling film cells appear to be the technically most mature design among the several ODC electrolysis cells that have been investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. http://www.uhde.biz/cgi-bin/byteserver.pl/archive/upload/uhde_brochures_pdf_en_10.00.pdf

References

  1. O’Brien TF, Bommaraju TV, Hine F (2005) Handbook of chlor-alkali technology. Springer, New York

    Google Scholar 

  2. Schmittinger P, Florkiewicz T, Curlin LC et al (2006) Ullmann’s encyclopedia of technical chemistry. Wiley-VCH, Weinheim

    Book  Google Scholar 

  3. Blum K, Schmittinger P (2005) In: Dittmeyer R, Keim W, Kreysa G et al (eds) Winnacker-Küchler. Chemische Technik: Prozesse und Produkte, vol 3, 5th edn. Wiley-VCH, Weinheim

  4. Perry ML (2005) Oxygen-consuming zero-gap electrolysis cells with porous/solid plates. WO patent application 2007/070047

  5. Butler CA (1950) Brine electrolysis. US Patent 2681884

  6. Juda W (1959) Electrochemical conversion of electrolyte solutions. US patent 3124520

  7. Vielstich W (1962) Chem Ing Tech 34:346

    Article  CAS  Google Scholar 

  8. Yeager E (1963) In: Mitchell W (ed) Fuel cells. Academic Press, New York

    Google Scholar 

  9. Gestaut L, Solomon F (1982) Process for preparing electrodes using precious metal-catalyst containing partially fluorinated active carbon. US patent 4431567

  10. Solomon F (1981) Gas diffusion electrode and process. US patent 4337496

  11. Solomon F (1980) Strengthening of carbon black-Teflon-containing electrodes. US patent 4337140

  12. Gestaut L (1978) Oxygen cathode for alkali-halide electrolysis cell. US patent 4278525

  13. LaBarre R (1979) Air-depolarized chlor-alkali cell operation methods. US patent 4221644

  14. Rogers D (1981) Start-up procedure for oxygen electrodes. US patent 4379034

  15. Bennett WR, Clere TM (1982) Narrow gap gas electrode electrolytic cell. US patent 4436608

  16. Solomon F (1983) Three-layer laminated matrix electrode. US patent 4459197

  17. Sutter RC (1983) Compartmentalized cathode cell. WO patent application 85/01072

  18. Gestaut LJ, Clere TM, Graham CE et al (1983) J Electrochem Soc 130:C333

    Google Scholar 

  19. Gestaut LJ, Clere TM, Niksa AJ et al (1983) J Electrochem Soc 130:C312

    Google Scholar 

  20. Pouli D, Melnicki L, Rudd E (1982) Electrolytic cell having a depolarized cathode. US patent 4332662

  21. Lefevre J (1978) Electrolytic oxidation in a cell having a separator support. US patent 4213833

  22. McIntyre J, Phillips R (1978) Porous catalyzed electrode provision and technique. US patent 4187350

  23. McIntyre J, Phillips R (1983) Method for producing a dual porosity body. US patent 4496437

  24. McIntyre J, Phillips R (1978) Novel oxygen electrode. US patent 4224129

  25. McIntyre J, Phillips R, Lefevre J (1978) Massive dual porosity gas electrodes. US patent 4260469

  26. McIntyre J, Phillips R, Lefevre J (1979) Electrolytic cell with oxygen depolarized cathodes. US patent 4340459

  27. McIntyre J, Phillips R, Lefevre J (1982) Electrolytic process using oxygen depolarized cathodes. US patent 4430177

  28. McIntyre J, Phillips R, Lefevre J (1981) Method of operating electrolytic cells having massive dual porosity gas electrodes. US patent 4341606

  29. Gritzner G (1973) Operation of a cation exchange membrane electrolytic cell for producing chlorine including feeding an oxidizing gas having a regulated moisture content to the cathode. US patent 4035254

  30. Gritzner G (1973) Operation of a diaphragm electrolytic cell for producing chlorine including feeding an oxidizing gas having a regulated moisture content to the cathode. US patent 4035255

  31. Wainerdi TJ (1986) Vertical gas electrode operation. US patent 4657651

  32. Staab R, Schmid D (1985) Dechema-Monographien 98:83

    CAS  Google Scholar 

  33. Staab R, Hannesen K (1984) Bipolar electrolysis apparatus with gas diffusion cathode. US patent 4584080

  34. Staab R (1983) Process for the preparation of a catalytically active electrode material for oxygen-consuming electrodes. US patent 4603118

  35. Schmid D, Medic N (1982) Dechema-Monographien 92:335

    CAS  Google Scholar 

  36. Staab R, Russow J (1983) Gas diffusion electrode material with a hydrophilic covering layer and process for its production. US patent 4563261

  37. Staab R (1984) Electrolysis cell with horizontally disposed electrodes. US patent 4615783

  38. Tetzlaff KH, Schmid D (1984) Electrochemical process for treating liquid electrolytes. US patent 5104497

  39. Staab R (1987) Chem Ing Tech 59:316

    Article  CAS  Google Scholar 

  40. Wendel W, Tetzlaff K (1988) Chem Ing Tech 60:563

    Article  CAS  Google Scholar 

  41. Klatt B (1985) Chem Tech (Leipzig) 37:512

    CAS  Google Scholar 

  42. Miles RC, Justice DD, Dotson RL (1985) Electrolysis of alkali metal chloride brine in catholyteless membrane cells employing an oxygen consuming cathode. US patent 4578159

  43. Miles R, Justice D, Woodard K (1985) Controlled operation of high current density oxygen consuming cathode cells to prevent hydrogen formation. US patent 4919791

  44. Welch C (1978) Method of electrolysis, and electrode for the electrolysis. US patent 4135995

  45. Johnson HB, Chamberlin R (1979) Brine electrolysis using fixed bed oxygen depolarized cathode chlor-alkali cell. US patent 4244793

  46. Chamberlin R (1979) Method of preparing electrocatalyst for an oxygen depolarized cathode electrolytic cell. US patent 4292197

  47. Cohn J, Adlhart O (1981) Method for suppressing hydrogen formation in an electrolytic cell. US patent 4486276

  48. Coker TG, Dempsey RM, LaConti AB (1978) Production of halogens in an electrolysis cell with catalytic electrodes bonded to an ion transporting membrane and an oxygen depolarized cathode. US patent 4191618

  49. Gruver G, Kunz H (1984) Circulation electrolyte electrochemical cell having gas depolarized cathode with hydrophobic barrier layer. US patent 4564427

  50. Nidola N, Martelli G (1988) Electrodes with dual porosity. US patent 5015344

  51. Oda Y, Morimoto T, Suzuki K (1981) Electrolytic cell. Japanese patent 59133386

  52. Morimoto T, Matsubara T (1982) Manufacture of gas diffusing electrode. Japanese patent 59133386

  53. Matsuura S, Matsui H, Mizutani Y (1977) Electrolysis. Japanese patent 54084893

  54. Ookai O, Kikuchi M (1978) Electrolysis of alkali chloride aqueous solutions. Japanese patent 55089486

  55. Ookai O, Igawa K, Hiraga Y (1979) Electrolysis of aqueous alkali chloride solution. Japanese patent 56047578

  56. Kaminaga T, Shigeta M, Fukuda H (1984) Oxygen-cathode for use in electrolysis of alkali chloride and process for preparing the same. US patent 4744879

  57. Poblotzki J (1986) Einsatz von Sauerstoffverzehrkathoden bei der Druckelektrolyse von Alkalichloridlösungen in Kationen-Austauschermembranzellen, PhD thesis, Universität Dortmund

  58. Simmrock K, Poblotzki J (1988) Electrochem Soc Proc 2:369

    Google Scholar 

  59. Oloman C, Radcliffe J (1986) J Appl Electrochem 16:457

    Article  CAS  Google Scholar 

  60. Yeager E, Bindra P (1980) Chem Ing Tech 52:384

    Article  CAS  Google Scholar 

  61. Foller PC (1998) Electrochem Soc Proc 10:213

    Google Scholar 

  62. Morimoto T, Suzuki K, Matsubara T et al (2000) Electrochim Acta 45:4257

    Article  Google Scholar 

  63. Nakamatsu S, Saiki K, Sakata A et al (1999) Electrochem Soc Proc 21:196

    Google Scholar 

  64. Ashida T, Wakita S, Tanaka M et al (1997) Denki Kagaku 65:1026

    Google Scholar 

  65. Nishiki Y, Ashida T, Shimamune T et al (1996) Electrolytic cell using gas diffusion electrode. US patent 5676808

  66. Ashida T, Shimamune T, Nishiki Y (1996) Gas diffusion electrode and electrolytic method using it. US patent 5733430

  67. Shimamune T, Aoki K, Tanaka M et al (1998) Electrolytic cell employing gas diffusion electrode. US patent 6117286

  68. Sakata A, Kato M, Hayashi K et al (1999) Electrochem Soc Proc 21:223

    Google Scholar 

  69. Sakata A, Saiki K, Watanabe T (1999) Method for electrolysis of alkali chloride. US patent 6488833

  70. Sakata A, Furuya N, Uchimura A et al (1998) Electrochem Soc Proc 10:237

    Google Scholar 

  71. Hayashi K, Sakata A, Furuya N et al (1999) Electrochem Soc Proc 21:209

    Google Scholar 

  72. Uchimura A, Aikawa H, Saiki K et al (1998) Electrochem Soc Proc 10:220

    Google Scholar 

  73. Ichinose O, Aikawa H, Watanabe T et al (1999) Electrochem Soc Proc 21:216

    Google Scholar 

  74. Saiki K, Furuya N, Aikawa H et al (1998) Electrochem Soc Proc 10:228

    Google Scholar 

  75. Saiki K, Sakata A, Aikawa H et al (1999) Electrochem Soc Proc 21:188

    Google Scholar 

  76. Furuya N, Aikawa H (2000) Electrochim Acta 45:4251

    Article  Google Scholar 

  77. Furuya N (1998) Gas diffusion electrode material, process for producing the same and process for producing gas diffusion electrode. US patent 6428722

  78. Uchimura A, Furuya N (1997) Denki Kagaku 65:1036

    Google Scholar 

  79. Furuya N, Ichinose O, Uchimora A (1997) Electrochem Soc Proc 28:89

    Google Scholar 

  80. Furuya N, Sakata A, Saiki K et al (1998) Soda electrolytic cell provided with gas diffusion electrode. US patent 6368473

  81. Furuya N, Syojaku H (1998) Electrochem Soc Proc 10:243

    Google Scholar 

  82. Furuya N, Aikawa H (1999) Electrochem Soc Proc 21:180

    Google Scholar 

  83. Furuya N (2003) J Solid State Electr 8:48

    Article  Google Scholar 

  84. Sugiyama M, Saiki K, Sakata A et al (2003) J Appl Electrochem 33:929

    Article  Google Scholar 

  85. Gestermann F, Pinter H, Camphausen J (1996) Electrochemical gaseous diffusion half cell. US patent 6251239

  86. Gestermann F, Ottaviani A (2001) In: Moorhouse J (ed) Modern chlor-alkali technology, vol 8. Blackwell Science, Oxford

    Google Scholar 

  87. Federico F, Martelli G, Pinter D (2001) In: Moorhouse J (ed) Modern chlor-alkali technology, vol 8. Blackwell Science, Oxford

    Google Scholar 

  88. Spalek O (1994) J Appl Electrochem 24:751

    Article  CAS  Google Scholar 

  89. Wang XL, Koda S (1997) Denki Kagaku 65:1002

    Google Scholar 

  90. Wang X, Koda S (1997) Denki Kagaku 65:1014

    Google Scholar 

  91. Chatenet M, Genies-Bultel L, Aurosseau M et al (2002) J Appl Electrochem 32:1131

    Article  Google Scholar 

  92. Chatenet M, Aurosseau M, Durand R et al (2003) J Electrochem Soc 150:D47

    Article  Google Scholar 

  93. Shimamune T, Wakita S, Ashida T et al (1996) Liquid-permeation-type gas-diffusion cathode. US patent 5827412

  94. Shimamune T, Nishiki Y, Tanaka M et al (1996) Liquid permeation-type gas-diffusion electrode. US patent 5938901

  95. Lipp L, Gottesfeld S, Chlistunoff J (2005) J Appl Electrochem 35:1015

    Article  Google Scholar 

  96. Burchardt T (2004) J Power Sources 135:192

    Article  Google Scholar 

  97. Kiros Y, Pirjamali M, Bursell M (2006) Electrochim Acta 51:3346

    Article  Google Scholar 

  98. Damjanovic A, Genshaw MA, Bockris JO (1967) J Electrochem Soc 114:1107

    Article  CAS  Google Scholar 

  99. Brito P, Sequeria C (1994) J Power Sources 52:1

    Article  Google Scholar 

  100. Fischer P, Heitbaum J (1980) Electroanal Chem 112:231

    Article  CAS  Google Scholar 

  101. Ichinose O, Kawaguchi M, Furuya N (2004) J Appl Electrochem 34:55

    Article  Google Scholar 

  102. Kim J, Pyun S, Yang T et al (1995) Electrochim Acta 40:2579

    Article  Google Scholar 

  103. Yang YF, Zhou YH, Cha CS (1995) Electrochim Acta 40:2579

    Article  Google Scholar 

  104. Chang CC, Wen TC, Tien HJ (1997) Electrochim Acta 42:557

    Article  Google Scholar 

  105. Yu EH, Scott K, Reeve RW (2003) Fuel Cells 3:169

    Article  Google Scholar 

  106. Strbac S, Adzic RR (1996) Electrochim Acta 41:2903

    Article  Google Scholar 

  107. Strbac S, Adzic RR (1996) J Electroanal Chem 403:169

    Article  Google Scholar 

  108. Anderson E, Taylor EJ, Vilambi NRK et al (1990) Separ Sci Technol 25:1537

    Article  CAS  Google Scholar 

  109. King WJ, Tseung ACC (1974) Electrochim Acta 19:485

    Article  CAS  Google Scholar 

  110. Gautier JL, Ortiz J, Heller-Ling N et al (1998) J Appl Electrochem 28:827

    Article  Google Scholar 

  111. Kivisaari J, Lamminen J, Lampinen MJ et al (1990) J Power Sources 32:233

    Article  CAS  Google Scholar 

  112. Holze R, Yeager E (1985) Dechema-Monographien 98:499

    CAS  Google Scholar 

  113. Perez J, Gonzalez ER, Ticianelli EA (1998) Electrochim Acta:1329

    Article  Google Scholar 

  114. Genies L, Faure R, Durand R (1998) Electrochim Acta 44:1329

    Article  Google Scholar 

  115. Gamburzev S, Petrov K, Appleby AJ (2002) J Appl Electrochem 32:805

    Article  Google Scholar 

  116. Kiros Y, Quatrano T, Björnbom P (2004) Electrochem Commun 6:526

    Article  Google Scholar 

  117. Miura N, Gomyo K, Yamazoe N et al (1981) Chem Lett 9:1279

    Article  Google Scholar 

  118. Wagner N, Schulze M, Gülzow E (2004) J Power Sources 127:264

    Article  Google Scholar 

  119. Gülzow E, Schulze M (2004) J Power Sources 127:243

    Article  Google Scholar 

  120. Faita G, Federico F (2001) Electrolysis cell with gas diffusion electrode. WO patent application 03/042430

  121. Wei Z, Guo H, Tang Z (1996) J Power Sources 62:233

    Article  Google Scholar 

  122. Winsel A (1987) Verfahren zur Herstellung einer kunst-stoffgebundenen Gasdiffusionselektrode mit metallischen Elektrokatalysatoren. German patent 3710168

  123. Chlistunoff JB, Lipp L, Gottesfeld S (2003) Oxygen consuming chlor alkali cell configured to minimize peroxide formation. US patent application 2005/0026005

  124. Yamada Y, Izawa Y, Uno M et al (2006) Oxygen-reducing gas diffusion cathode and method of sodium chloride electrolysis. US patent application 2007/0095676

  125. Gestermann F, Bulan A, Pinter H (2004) Electrochemical cell. US patent application 2005/0277016

  126. Wenske H, Matschiner H, Siegel H (1991) Electrolytic cell and capillary gap electrode for gas-developing or gas-consuming electrolytic reactions and electrolysis process therefor. US patent 5650058

  127. Tetzlaff KH, Walz R, Gossen CA (1994) J Power Sources 50:311

    Article  CAS  Google Scholar 

  128. Lohrberg K, Lohrberg D (2001) Electrolysis device. US patent application 2004/0074764

Download references

Acknowledgement

Part of this study was funded by the German Ministry of Education and Research (BMBF) under the klimazwei research programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Turek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moussallem, I., Jörissen, J., Kunz, U. et al. Chlor-alkali electrolysis with oxygen depolarized cathodes: history, present status and future prospects. J Appl Electrochem 38, 1177–1194 (2008). https://doi.org/10.1007/s10800-008-9556-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-008-9556-9

Keywords

Navigation