Skip to main content
Log in

Direct electrolytic reduction of solid alumina using molten calcium chloride-alkali chloride electrolytes

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Solid alumina was reduced by electro-deoxidation to aluminium metal containing 1.8 and 5.4 at% Ca in molten CaCl2–NaCl and CaCl2–LiCl electrolytes at 900 °C, respectively. The potential-pO2− diagrams for the Al–O–M–Cl (M = Na or Li, or/and Ca) system were constructed to predict equilibrium phase relationships in the electrolytes at 700 and 900 °C. It was found that calcium aluminates were formed as the main intermediate reaction products and were subsequently reduced to form the Al-rich Al–Ca alloys during electro-deoxidation. Calcium and/or lithium, at reduced activities, were created at the cathode especially at 700 °C at the same time as the ionization of the oxygen from the cathode, which resulted in Al2Ca formation. The experimental results were consistent with the thermodynamic predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Grjotheim K, Welch BJ (1988) Aluminium smelter technology. Aluminium-Verlag, Dusseldorf

    Google Scholar 

  2. Kirk-Othmer (2002) Encyclopaedia of chemical technology, vol 2. Wiley, New York, p 279

  3. Fray DJ (1988) In: Sohn HY, Geskin ES (eds) Metallurgical processes for the year 2000 and beyond. TMS, Warrendale, PA, p 493

    Google Scholar 

  4. Edwards L, Kvande H (2001) J Met 53:28

    CAS  Google Scholar 

  5. Welch BJ, Hyland MM, James BJ (2001) J Met 53:13

    CAS  Google Scholar 

  6. Tabereaux AT (1992) J Met 44:20

    CAS  Google Scholar 

  7. Choate WT, Green JAS (2003) U.S. energy requirements for aluminum production: historical perspective, theoretical limits and new opportunities. U.S. Department of Energy, Energy Efficiency and Renewable Energy, Washington, DC

    Google Scholar 

  8. Cochran CN (1987) Production of aluminium by alternate processes. In: 8th international light metals congress, Leoben, Vienna, p 82

  9. Fray DJ, Farthing TW, Chen Z (1998) International patent PCT/GB99/01781, first filing date, 05 June

  10. Chen GZ, Fray DJ, Farthing TW (2000) Nature 407:361

    Article  CAS  Google Scholar 

  11. Fray DJ (2000) Metall Mater Trans B 31B:1153

    Article  CAS  Google Scholar 

  12. Fray DJ (2001) J Met 53:26

    CAS  Google Scholar 

  13. Fray DJ (2002) Can Metall Q 41:433

    CAS  Google Scholar 

  14. Yan XY, Fray DJ (2002) Metall Mater Trans B 33B:685

    Article  CAS  Google Scholar 

  15. Nohira T, Yasuda K, Ito Y (2003) Nat Mater 2:397

    Article  CAS  Google Scholar 

  16. Jin XB, Gao P, Wang DH, Hu XH, Chen GZ (2004) Angew Chem 116:751

    Article  Google Scholar 

  17. Yan XY, Fray DJ (2005) J Electrochem Soc 152:D12

    Article  CAS  Google Scholar 

  18. Yan XY, Fray DJ (2005) J Electrochem Soc 152:E308

    Article  CAS  Google Scholar 

  19. Qiu GH, Ma M, Wang DH, Jin XB, Hu XH, Chen GZ (2005) J Electrochem Soc 152:E328

    Article  CAS  Google Scholar 

  20. Schwandt C, Fray DJ (2005) Electrochim Acta 51:66

    Article  CAS  Google Scholar 

  21. Sakamura Y, Kurata M, Inoue T (2006) J Electrochem Soc 153:D31

    Article  CAS  Google Scholar 

  22. Yan XY, Fray DJ (2005) Adv Funct Mater 15:1757

    Article  CAS  Google Scholar 

  23. Jiang K, Hu XH, Ma M, Wang DH, Qiu GH, Jin XB, Chen GZ (2006) Angew Chem 118:442

    Article  Google Scholar 

  24. Wenz DA, Johnson I, Wolson RD (1969) J Chem Eng Data 14:252

    Article  Google Scholar 

  25. Story JB, Clarke JT (1957) J Met 9:1449

    CAS  Google Scholar 

  26. Littlewood R (1962) J Electrochem Soc 109:525

    Article  CAS  Google Scholar 

  27. Ferry DM, Picard GS, Tremillon BL (1988) Trans IMM C 97:C21

    CAS  Google Scholar 

  28. Martinez AM, Castrillejo Y, Barrado E, Harrberg GM, Picard G (1998) J Electroanal Chem 449:67

    Article  CAS  Google Scholar 

  29. Dring K, Dashwood R, Inman D (2005) J Electrochem Soc 152:D184

    Article  CAS  Google Scholar 

  30. Dring K, Bhagat R, Jackson M, Dashwood R, Inman D (2006) J Alloys Comp 419:103

    Article  CAS  Google Scholar 

  31. Bhagat R, Jackson M, Inman D, Dashwood R (2008) J Electrochem Soc 155:E63

    Article  CAS  Google Scholar 

  32. Yasuda K, Nohira T, Hagiwara R, Ogata YH (2007) J Electrochem Soc 154:E95

    Article  CAS  Google Scholar 

  33. Picard G, Seon F, Tremillon B (1980) Electrochim Acta 25:1453

    Article  CAS  Google Scholar 

  34. Picard G, Seon F, Tremillon B (1983) Selective chlorination of oxides in suspension in molten chlorides. In: Proceedings of 1st inter symposium on molten salt chemistry and technology, Kyoto, p 49

  35. Tremillon B, Picard G (1987) In: Mamantov G, Mamantov R (eds) Molten salt chemistry. D Reidel Publishing Company, Boston, MA, p 305

    Google Scholar 

  36. Boghosian S, Godo A, Mediaas H, Ravlo W, Ostvold T (1991) Acta Chem Scand 45:145

    Article  CAS  Google Scholar 

  37. Stern KH, Panayappan R, Flinn DR (1977) J Electrochem Soc 124:641

    Article  CAS  Google Scholar 

  38. Janz GJ (1967) Molten salts handbook. Academic Press, New York, p 180

    Google Scholar 

  39. Roth RS (ed) (2001) Phase equilibria diagrams, vol XIII. The American Ceramic Society, Ohio, p 84

    Google Scholar 

  40. Chartrand P, Pelton AD (2001) Metall Mater Trans A 32A:1361

    CAS  Google Scholar 

  41. HSC (1999) Outokumpu chemistry for windows, version 4.0, Outokumpu Research Oy Information Service, Pori, Finland

  42. Johnson GK, Pierce RD, Poa DS, McPheeters CC (1994) In: Mishra B, Averill WA (eds) Actinide processing: methods and materials. TMS, Warrendale, PA, p 199

    Google Scholar 

  43. Wang SL, Zhang FH, Liu XA, Zhang LJ (2008) Thermochim Acta 470:105

    Article  CAS  Google Scholar 

  44. Cowley WE (1982) In: Lovering DG (ed) Molten salt technologies. Plenum Press, New York, p 57

    Google Scholar 

  45. Haarberg GM, Thonstad J (1989) J Appl Electrochem 19:789

    Article  CAS  Google Scholar 

  46. Shackelford JF, Alexander W (2001) CRC Materials science and engineering handbook, 3rd edn. CRC Press, FL, p 565

    Google Scholar 

  47. Okamoto H (2003) J Phase Equilib 24:91

    CAS  Google Scholar 

  48. Matsuishi S, Toda Y, Miyakawa M, Hayashi K, Kamiya T, Hirano M, Tanaka I, Hosono H (2003) Science 301:626

    Article  CAS  Google Scholar 

  49. Kim SW, Matsuishi S, Nomura T, Kubota Y, Takata M, Hayashi K, Kamiya T, Hirano M, Hosono H (2007) Nano Lett 7:1138

    Article  CAS  Google Scholar 

  50. Medvedeva JE, Teasley EN, Hoffman MD (2007) Phys Rev B 76:155107

    Article  Google Scholar 

  51. Sharma RA (1970) J Phys Chem 74:3896

    Article  CAS  Google Scholar 

  52. Bredig MA, Johnson JW, Smith WT (1955) J Am Chem Soc 77:307

    Article  CAS  Google Scholar 

  53. Nakajima T, Minami R, Nakanishi K, Watanabe N (1974) Bull Chem Soc Jpn 47:2071

    Article  CAS  Google Scholar 

  54. Murray JL (1983) Bull Alloy Phase Diagr 4:137

    Google Scholar 

  55. Heuer AH, Lagerlof KPD (1999) Phil Mag Lett 79:619

    Article  CAS  Google Scholar 

  56. Liu J, Poignet JC (1990) J Appl Electrochem 20:864

    Article  CAS  Google Scholar 

  57. Kirk-Othmer (1992) Encyclopedia of chemical technology, 4th edn. Wiley, New York, p 783

  58. Ozturk K, Zhong Y, Luo AA, Liu ZK (2003) J Met 55:40

    CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the Light Metals Flagship, a National Research Program of Australia, for financial support. Mrs. N. A. Olshina is thanked for conducting XRD analyses of the samples. Characterization of the samples using the SEM-EDS and EDX by Mr. D. J. Cameron and Dr. A. M. Glenn is appreciated. Assistance from the Analytical Services Group of CSIRO Minerals at Clayton is also acknowledged. Finally, the authors would like to thank the reviewer for the valuable comments that were considered in revising and improving our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao Y. Yan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, X.Y., Fray, D.J. Direct electrolytic reduction of solid alumina using molten calcium chloride-alkali chloride electrolytes. J Appl Electrochem 39, 1349–1360 (2009). https://doi.org/10.1007/s10800-009-9808-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-009-9808-3

Keywords

Navigation