Skip to main content
Log in

Electrochemical properties and simultaneous determination of dihydroxybenzene isomers at ordered mesoporous carbon-modified electrode

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The voltammetric behaviors of dihydroxybenzene isomers were studied at an ordered mesoporous carbon-modified glassy carbon (OMC/GC) electrode. Compared to the bare electrode, the electrocatalytic activity of the modified electrode toward dihydroxybenzenes is evidenced by the increase of the peak current and the decrease of the peak separation (ΔE p) in 0.1 M pH 5.0 phosphate buffer solution (PBS). Furthermore, at the OMC/GC-modified electrode, the three isomers could be separated entirely. The oxidation peak potential difference between hydroquinone and catechol is 154 mV, whereas that difference between catechol, and resorcinol is 370 mV. In the amperometric detection, the peak currents of dihydroxybenzene increased linearly with increasing dihydroxybenzene contents. The detection limits were 7.6 × 10−8 M, 1.0 × 10−7 M, 9.0 × 10−8 M for hydroquinone, catechol and resorcinol, respectively, which are the lowest values ever reported for dihydroxybenzene isomers. These make OMC/GC electrode a promising candidate for the simultaneous determination of isomers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Cui H, He C, Zhao GJ (1999) J Chromatogr A 855:171

    Article  CAS  Google Scholar 

  2. Fujino K, Yoshitake T, Kehr J, Nohta H, Yamaguchi M (2003) J Chromatogr A 1012:169

    Article  CAS  Google Scholar 

  3. Penner NA, Nesterenko PN, Rybalko NA (2001) J Anal Chem 56:93

    Article  Google Scholar 

  4. Nagaraja P, Vasantha RA, Sunitha KR (2001) Talanta 55:1039

    Article  CAS  Google Scholar 

  5. Chen GN, Liu JS, Duan JP, Chen HQ (2000) Talanta 53:651

    Article  CAS  Google Scholar 

  6. Del Pilar Taboada Sotomayor M, Tanaka AA, Kubota LT (2002) Anal Chim Acta 455:215

    Article  Google Scholar 

  7. Cruz Vieira I, Fatibello-Filho O (2000) Talanta 52:681

    Article  CAS  Google Scholar 

  8. Carvalho MR, Mello C, Kubota LT (2000) Anal Chim Acta 420:109

    Article  Google Scholar 

  9. Ding YP, Liu WL, Wu QS, Wang XG (2005) J Electroanal Chem 575:275

    Article  CAS  Google Scholar 

  10. Wang ZH, Li SJ, Lv QZ (2007) Sens Actuators B Chem 127:420

    Article  Google Scholar 

  11. Yang PH, Wei WZ, Yang L (2007) Microchim Acta 157:229

    Article  CAS  Google Scholar 

  12. Ryoo R, Joo SH, Jun S (1999) J Phys Chem B 1039:7743

    Article  Google Scholar 

  13. Liang C, Dai S (2006) J Am Chem Soc 16:5316

    Article  Google Scholar 

  14. Jun S, Joo SH, Ryoo R, Kruk M, Jaroniec M, Liu Z, Ohsuna T, Terasaki O (2000) J Am Chem Soc 122:10712

    Article  CAS  Google Scholar 

  15. Joo SH, Choi SJ, Oh I, Kwak J, Liu Z, Terasaki O, Ryoo R (2001) Nature 412:169

    Article  CAS  Google Scholar 

  16. Zhou M, Guo LP, Lin FY, Liu HX (2007) Anal Chim Acta 587:124

    Article  CAS  Google Scholar 

  17. Zhou M, Ding J, Guo LP, Shang QK (2007) Anal Chem 79:5328

    Article  CAS  Google Scholar 

  18. Zhou M, Shang L, Li BL, Huang LJ, Dong SJ (2008) Electrochem Commun 10:859

    Article  CAS  Google Scholar 

  19. Tan WT, Bond AM, Ngooi SW, Lim EB, Goh JK (2003) Anal Chim Acta 491:181

    Article  CAS  Google Scholar 

  20. Xu J, Wang Y, Xian Y, Jin L, Tanaka K (2003) Talanta 60:1123

    Article  CAS  Google Scholar 

  21. Sugawara K, Hoshi S, Akatsuka K, Shimazu KJ (1996) J Electroanal Chem 414:253

    Article  Google Scholar 

  22. Jun S, Joo SH, Ryoo R, Kruk M, Jaroniec M, Liu Z, Ohsuna T, Terasaki O (2000) J Am Chem Soc 122:10712

    Article  CAS  Google Scholar 

  23. Shanmugam S, Gedanken A (2006) Electrochem Commun 8:1095

    Article  Google Scholar 

  24. Bard AJ, Faulkner LR (1980) Electrochemical methods fundamentals and applications. Wiley, New York

    Google Scholar 

  25. Banks CE, Moore RR, Davies TJ, Compton RG (2004) Chem Commun 10:1804

    Article  Google Scholar 

  26. Laviron E (1974) J Elctroanal Chem 52:355

    Article  CAS  Google Scholar 

  27. Nakano K, Ohkubo K, Taira H, Takagi M, Soh N, Imato T (2008) J Electroanal Chem 623:49

    Article  CAS  Google Scholar 

  28. Ghanem MA (2007) Electrochem Commun 9:2501

    Article  CAS  Google Scholar 

  29. Wang L, Huang PF, Bai JY, Wang HJ, Zhang LY, Zhao YQ (2007) Microchim Acta 158:151

    Article  CAS  Google Scholar 

  30. Yu JJ, Zhao FQ, Zeng BZ (2009) Electrochim. Acta 54:984

    Article  CAS  Google Scholar 

  31. Hawley MD, Tatawawadi SV, Piekarski S, Adams RN (1967) J Am Chem Soc 89:447

    Article  CAS  Google Scholar 

  32. Kudera M, Nakagawa Y, Fletcher S, Hill HAO (2001) Lab Chip 1:127

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support by the National Natural Science Foundation of China (No. 20875012), and the Analysis and Testing Foundation of the Northeast Normal University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liping Guo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bai, J., Guo, L., Ndamanisha, J.C. et al. Electrochemical properties and simultaneous determination of dihydroxybenzene isomers at ordered mesoporous carbon-modified electrode. J Appl Electrochem 39, 2497–2503 (2009). https://doi.org/10.1007/s10800-009-9941-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-009-9941-z

Keywords

Navigation