Skip to main content
Log in

Electrodeposition of CuNiW alloys: thin films, nanostructured multilayers and nanowires

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Electrodeposition operating conditions were determined for the deposition of copper–nickel–tungsten alloys and compositionally, multilayered deposits. Multilayered alloys with one layer rich in Cu and the other layer rich in NiW were fabricated as both thin films and nanowires. The electrolyte contained 0.6 M Na3C6H5O7, 0.2 M Na2WO4, 0.3 M NiSO4 and variable CuSO4 concentration at a pH of 8 adjusted with ammonium hydroxide at 70 ± 2 °C. The deposit composition and current efficiency were characterized using rotating cylinder electrodes with and without a Hull configuration. Addition of Cu(II) to the electrolyte lowered the tungsten partial current density and hence the W wt% in the deposit. Thin film multilayered alloys, with a modulation in composition, were fabricated with pulse current deposition and conditions to selectively etch one layer was determined with a view towards fabricating nanotemplates. Nanowires with modulated composition were also demonstrated, electrodeposited into alumina nanoporous templates. However, the nanowire deposition was confounded by the formation of oxide during the modulation, and results herein recommend that the potential of the more noble step be more negative than −0.9 V versus SCE to avoid this situation, despite metallic alloy formation in unrecessed electrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Yao S, Zhao S, Guo H, Kowaka M (1996) Corrosion 52:183

    Article  CAS  Google Scholar 

  2. Singh VB, Singh LC, Tikoo PK (1980) J Electrochem Soc 127:590

    Article  CAS  Google Scholar 

  3. Atanassov N, Gencheva K, Bratoeva M (1997) Plat Surf Finish 84:67

    CAS  Google Scholar 

  4. Obradovic M, Stevanovic J, Despic A, Stevanovic R, Stoch JJ (2001) J Serb Chem Soc 66:899

    CAS  Google Scholar 

  5. Brenner A (1963) Electrodeposition of alloys: principles and practice, vol II: practical and specific information. Academic Press, New York, p 656

  6. Akiyama T, Fukushima H (1992) ISIJ Int 32:787

    Article  CAS  Google Scholar 

  7. Eliaz N, Sridhar TM, Gileadi E (2005) Electrochim Acta 50:2893

    Article  CAS  Google Scholar 

  8. Yamasaki T (2000) Mater Phys Mech 1:127

    CAS  Google Scholar 

  9. Landa V, Vitek J, Neumann J (1987) Plat Surf Finish 74:128

    CAS  Google Scholar 

  10. Chassaing E, Vu Quang K, Wiart R (1986) J Appl Electrochem 16:591

    Article  CAS  Google Scholar 

  11. Younes O, Gileadi E (2002) J Electrochem Soc 149:C100

    Article  CAS  Google Scholar 

  12. Arai S, Hasegawa T, Kaneko N (2003) J Electrochem Soc 150:C798

    Article  CAS  Google Scholar 

  13. Arai S, Hasegawa T, Kaneko N (2004) Electrochim Acta 49:945

    Article  CAS  Google Scholar 

  14. Leith SD, Schwartz DT (1999) J Micromech Microeng 9:97

    Article  CAS  Google Scholar 

  15. Myung NV, Nobe K (2000) Plat Surf Finish 87:125

    CAS  Google Scholar 

  16. Krishnan KSR, Srinivasan K, Mohan S (2002) Trans Inst Met Finish 80:46

    CAS  Google Scholar 

  17. Peter L, Kupay Z, Cziraki A, Padar J, Toth J, Bakonyi I (2001) J Phys Chem B 105:10867

    Article  CAS  Google Scholar 

  18. Bakonyi I, Toth-Kadar E, Toth J, Becsei T, Tarnoczi T, Kamasa P (1999) J Phys Condens Matter 11:963

    Article  CAS  Google Scholar 

  19. Ross CA (1994) Annu Rev Mater Sci 24:159

    Article  CAS  Google Scholar 

  20. Osaka T, Asahi T, Kawaji J, Yokoshima T (2005) Electrochim Acta 50:4576

    Article  CAS  Google Scholar 

  21. Alper M (2002) In Shi D, Aktaş B, Pust L, Mikailov F (eds) Nanostructured magnetic materials and their applications, vol 593. Springer, p 111

  22. Switzer JA (2001) In: Hodes G (ed) Electrochemistry of nanomaterials. Wiley–VCH, p 67

  23. Huang Q, Young DP, Chan JY, Jiang J, Podlaha EJ (2002) J Electrochem Soc 149:C349

    Article  CAS  Google Scholar 

  24. Myung NV, Schwartz M, Nobe K (2000) Proc Electrochem Soc 99-33:263

    Google Scholar 

  25. Blum W (1921) Trans Am Electrochem Soc 40:307

    Google Scholar 

  26. Donten M, Stojek Z (1996) J Appl Electrochem 26:665

    Article  CAS  Google Scholar 

  27. Foecke T, Lashmore DS (1992) Scr Metall Mater 27:651

    Article  CAS  Google Scholar 

  28. Barnett SA, Shinn M (1994) Annu Rev Mater Sci 24:481

    Article  CAS  Google Scholar 

  29. Gabe DR, Wilcox GD (2002) Met Finish 100:18

  30. Tench DM, White JT (1984) Metall Trans A 15A:2039

    CAS  Google Scholar 

  31. Tench DM, White JT (1991) J Electrochem Soc 138:3757

    Article  CAS  Google Scholar 

  32. Maximov I, Sarwe EL, Beck M, Deppert K, Graczyk M, Magnusson MH, Montelius L (2002) Microelectron Eng 61–62:449

    Article  Google Scholar 

  33. Cao H, Yu Z, Wang J, Tegenfeldt JO, Austin RH, Chen E, Wu W, Chou SY (2002) Appl Phys Lett 81:174

    Article  CAS  Google Scholar 

  34. Miyauchi A (2005) J Photopolym Sci Technol 18:523

    Article  CAS  Google Scholar 

  35. Luesebrink H, Glinsner T, Jakeway SC, Crabtree HJ, Cameron NS, Roberge H, Veres T (2005) J Nanosci Nanotechnol 5:864

    Article  CAS  Google Scholar 

  36. Chou SY, Krauss PR, Zhang W, Guo L, Zhuang L (1997) J Vac Sci Technol B 15:2897

    Article  CAS  Google Scholar 

  37. Hirai Y, Tanaka Y (2002) J Photopolym Sci Technol 15:475

    Article  CAS  Google Scholar 

  38. Jackman RJ, Whitesides GM (1999) Chemtech 5:18

    Google Scholar 

  39. Wang JJ, Chen L, Tai S-W, Deng X, Sciortino PF, Liu F, Deng J, Liu X, Nikolov A, Sinatore D (2005) Proc SPIE 5592:51

    Article  CAS  Google Scholar 

  40. Schueller OJA, Zhao X-M, Whitesides GM, Smith SP, Prentiss M (1999) Adv Mater 11:37

    Article  CAS  Google Scholar 

  41. Lim C-Y, Huang Q, Xie X, Safir A, Harfenist SA, Cohn R, Podlaha EJ (2004) J Appl Electrochem 34:857

    Article  CAS  Google Scholar 

  42. Huang Q, Podlaha EJ (2005) J Appl Electrochem 35:1127

    Article  CAS  Google Scholar 

  43. Bozzini B, Giovannelli G, Lecis N, Lenardi C, Magagnin L, Manara D, Negri E, Vallauri R, Zangari G (1999) AIFM Galvanotecnica e Nuove Finiture 9:256

    CAS  Google Scholar 

  44. Bradley PE, Landolt D (1999) Electrochim Acta 45:1077

    Article  CAS  Google Scholar 

  45. Heydon GP, Hoon RS, Farley AN, Tomlinson SL, Valera MS, Attenborough K, Schwarzacher W (1997) J Phys D Appl Phys 30:1084

    Article  Google Scholar 

  46. Evans PR, Yi G, Schwarzacher W (2000) Appl Phys Lett 76:481

    Article  CAS  Google Scholar 

  47. Piraux L, Dubois S, Duvail JL, Ounadjela K, Fert A (1997) J Magn Magn Mater 175:127

    Article  CAS  Google Scholar 

  48. Eco Chemie, Inc. The Netherlands. http://www.autolab-instruments.com

Download references

Acknowledgements

The authors thankfully acknowledge funding from NSF, # 0746567. We would also like to acknowledge Ms. Margaret C. Hank and Dr. X. Xie for their help in TEM and SEM imaging, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. J. Podlaha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gupta, M., Podlaha, E.J. Electrodeposition of CuNiW alloys: thin films, nanostructured multilayers and nanowires. J Appl Electrochem 40, 1429–1439 (2010). https://doi.org/10.1007/s10800-010-0120-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-010-0120-z

Keywords

Navigation