Skip to main content
Log in

The compatibility of transition metal oxide/carbon composite anode and ionic liquid electrolyte for the lithium-ion battery

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Three types of transition metal oxide/carbon composites including Fe2O3/C, NiO/C and CuO/Cu2O/C synthesized via spray pyrolysis were used as anode for lithium ion battery application in conjunction with two types of ionic liquid: 1 M LiN(SO2CF3)2 (LiTFSI) in 1-ethyl-3-methyl-imidazolium bis(fluorosulfonlyl)imide (EMI-FSI) or 1-methyl-1-propylpyrrolidinium bis(fluorosulfonyl)imide (Py13-FSI). From the electrochemical measurements, the composite electrodes using Py13-FSI as electrolyte show much better electrochemical performance than those using EMI-FSI as electrolyte in terms of reversibility. The Fe2O3/C composite shows the highest specific capacity and the best capacity retention (425 mAh g−1) under a current density of 50 mA g−1 for up to 50 cycles, as compared with the NiO/C and CuO/Cu2O/C composites. The present research demonstrates that Py13-FSI could be used as an electrolyte for transition metal oxides in lithium-ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Yoshio M, Brodd RJ, Kozawa A (2009) Lithium-ion batteries: science and technologies. Springer Press, New York Chapter 1

    Book  Google Scholar 

  2. Tarascon JM, Armand M (2001) Nature 414:359

    Article  CAS  Google Scholar 

  3. Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon JM (2000) Nature 407:496

    Article  CAS  Google Scholar 

  4. Chen J, Xu LN, Li WY, Gou XL (2005) Adv Mater 17:582

    Article  CAS  Google Scholar 

  5. Varghese B, Reddy MV, Yanwu Z, Lit CS, Hoong TC, Rao GVS, Chowdari BVR, Wee ATS, Lim CT, Sow CH (2008) Chem Mater 20:3360

    Article  CAS  Google Scholar 

  6. Grugeon S, Laruelle S, Herrera-Urbina R, Dupont L, Poizot P, Tarascon JM (2001) J Electrochem Soc 148:A285

    Article  CAS  Google Scholar 

  7. Jiao F, Bao J, Bruce PG (2007) Electrochem Solid-State Lett 10:A264

    Article  CAS  Google Scholar 

  8. Chou SL, Wang JZ, Wexler D, Konstantinov K, Zhong C, Liu HK, Dou SX (2010) J Mater Chem 20:2092

    Article  CAS  Google Scholar 

  9. Huang XH, Tu JP, Zhang CQ, Chen XT, Yuan YF, Wu HM (2007) Electrochim Acta 52:4177

    Article  CAS  Google Scholar 

  10. Fu LJ, Liu H, Zhang HP, Li C, Zhang T, Wu YP, Holze R, Wu HQ (2006) Electrochem Commun 8:1

    Article  CAS  Google Scholar 

  11. Rahman MM, Chou SL, Zhong C, Wang JZ, Wexler D, Liu HK (2010) Solid State Ion 180:1646

    Article  CAS  Google Scholar 

  12. Wu GT, Wang CS, Zhang XB, Yang HS, Qi ZF, Li WZ (1998) J Power Sources 75:175

    Article  CAS  Google Scholar 

  13. Xiang JY, Tu JP, Zhang J, Zhong J, Zhang D, Cheng JP (2010) Electrochem Commun 12:1103

    Article  CAS  Google Scholar 

  14. Zhong C, Wang JZ, Gao XW, Chou SL, Konstantinov K, Liu HK (2011), J Nanosci Nanotechnol Accepted

  15. Wang JZ, Zhong C, Wexler D, Idris NH, Wang ZX, Chen LQ, Liu HK (2011) Chem Eur J 17:661

    Article  CAS  Google Scholar 

  16. Li J, Dahn HM, Krause LJ, Le DB, Dahn JR (2008) J Electrochem Soc 155:A812

    Article  CAS  Google Scholar 

  17. Zhong C, Wang JZ, Chou SL, Konstantinov K, Rahman M, Liu HK (2010) J Appl Electrochem 40:1415

    Article  CAS  Google Scholar 

  18. Galinski M, Lewandowski A, Stepniak I (2006) Electrochim Acta 51:5567

    Article  CAS  Google Scholar 

  19. Ishikawa M, Sugimoto T, Kikuta M, Ishiko E, Kono M (2006) J Power Sources 162:658

    Article  CAS  Google Scholar 

  20. Hassoun J, Fernicola A, Navarra MA, Panero S, Scrosati B (2010) J Power Sources 195:574

    Article  CAS  Google Scholar 

  21. Sugimoto T, Atsumi Y, Kono M, Kikuta M, Ishiko E, Yamagata M, Ishikawa M (2010) J Power Sources 195:6153

    Article  CAS  Google Scholar 

  22. Guerfi A, Duchesne S, Kobayashi Y, Vijh A, Zaghib K (2008) J Power Sources 175:866

    Article  CAS  Google Scholar 

  23. Chou SL, Wang JZ, Chen ZX, Liu HK, Dou SX (2011) Nanotechnology 22:265401

    Article  Google Scholar 

Download references

Acknowledgments

Financial support provided by the Australian Research Council (ARC) through a Discovery Project (DP 0987805) and ARC Centre of Excellence funding (CE0561616) is gratefully acknowledged. The authors thank Dr. T. Silver at the University of Wollongong for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shu-Lei Chou or Jia-Zhao Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chou, SL., Lu, L., Wang, JZ. et al. The compatibility of transition metal oxide/carbon composite anode and ionic liquid electrolyte for the lithium-ion battery. J Appl Electrochem 41, 1261–1267 (2011). https://doi.org/10.1007/s10800-011-0330-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-011-0330-z

Keywords

Navigation