Skip to main content
Log in

Cathodic degradation mechanisms of pure Sn electrocatalyst in a nitrogen atmosphere

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The application of electrocatalysts used at high cathodic overpotentials for the electrochemical reduction of pollutant species such as CO2 has revealed a lack of understanding of the cathodic degradation mechanisms of those materials. Pure Sn is one of the most relevant candidate materials mainly because of its high selectivity for the reduction of CO2 to formic acid and formate salts. Degradation of the electrocatalyst can arise from a combination of cathodic polarization and induced changes to the surface by CO2 reduction products. In this study, the cathodic degradation mechanisms of pure Sn were studied as a function of rotation rate, time, current density, electrolyte concentration, grain size, and orientation in a nitrogen-saturated atmosphere using a rotating disk electrode. Several degradation morphologies were observed, but three were dominant. In the first type, electrochemical alterations of grains with specific orientations produced substantial weight changes, both losses and gains. The second type resulted in an alkali-rich deposit that had a high coverage but produced small weight changes. The third type consisted of carbon-rich stains that typically had a small coverage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Katsounaros I, Dortsiou M, Kyriacou G (2009) J Hazard Mater 171:323

    Article  CAS  Google Scholar 

  2. Katsounaros I, Ipsakis D, Polatides C, Kyriacou G (2006) Electrochim Acta 52:1329

    Article  CAS  Google Scholar 

  3. Katsounaros I, Kyriacou G (2007) Electrochim Acta 52:6412

    Article  CAS  Google Scholar 

  4. Katsounaros I, Kyriacou G (2008) Electrochim Acta 53:5477

    Article  CAS  Google Scholar 

  5. Oloman C, Li H (2008) ChemSusChem 1:385

    Article  CAS  Google Scholar 

  6. Hori Y (2008) In: Vayenas C et al (eds) Modern aspects of electrochemistry, vol 42. Springer, New York, p 89

  7. Subramanian K, Asokan K, Jeevarathinam D, Chandrasekaran M (2007) J Appl Electrochem 37:255

    Article  CAS  Google Scholar 

  8. Gladyshev V (1975) J Appl Chem USSR 48:540

    Google Scholar 

  9. Gastwirt LW, Salzberg HW (1957) J Electrochem Soc 104:701

    Article  Google Scholar 

  10. Salzberg HW, Mies F (1958) J Electrochem Soc 105:64

    Article  CAS  Google Scholar 

  11. Salzberg AW, Andreatch AJ (1954) J Electrochem Soc 101:28

    Article  Google Scholar 

  12. Winter M, Besenhard JO (1999) Electrochim Acta 45:31

    Article  CAS  Google Scholar 

  13. Kiseleva IG, Avrutskaya IA, Tomashova NN, Niyazinbetov ME, Fioshin M, Kabanov BN (1976) Sov Electrochem 12:859

    Google Scholar 

  14. Cherasev AF, Khrushch AP (1998) Russ J Electrochem 34:410

    Google Scholar 

  15. Cherashev AF, Khrushch AP (1997) Russ J Electrochem 33:181

    CAS  Google Scholar 

  16. Kabanov BN (1968) Electrochim Acta 13:19

    Article  CAS  Google Scholar 

  17. Courtney IA, Dahn JR (1997) J Electrochem Soc 144:2045

    Article  CAS  Google Scholar 

  18. Pourbaix M (1974) Atlas of electrochemical equilibria in aqueous solutions. National Association of Corrosion Engineers, Houston

    Google Scholar 

  19. Brown CA (1974) J Org Chem 39:3913

    Article  CAS  Google Scholar 

  20. Mills R, Dayalan E, Ray P, Dhandapani B, He J (2002) Electrochim Acta 47:3909

    Article  CAS  Google Scholar 

  21. Eigeldinger J, Vogt H (2000) Electrochim Acta 45:4449

    Article  CAS  Google Scholar 

  22. Dukovic J, Tobias CW (1987) J Electrochem Soc 134:331

    Article  CAS  Google Scholar 

  23. Salzberg HW, Andreatch AJ (1954) J Electrochem Soc 101:528

    Article  CAS  Google Scholar 

  24. Guterman V, Averina Yu, Grigor’ev V (1999) Electrochim Acta 45:873

    Article  CAS  Google Scholar 

  25. Maykuth DJ, Hampshire WB (2003) In: Cramer SD, Covino BS (eds) ASM handbook, vol. 13B: corrosion: materials. ASM, Materials Park, p 177

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank F. Gambina and M. Kappes for fruitful discussions and N. Kelley for help with the chemical measurements. The project was sponsored by a gift from DNV Research & Innovation, Dublin, Ohio.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. S. Frankel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chiacchiarelli, L.M., Zhai, Y., Frankel, G.S. et al. Cathodic degradation mechanisms of pure Sn electrocatalyst in a nitrogen atmosphere. J Appl Electrochem 42, 21–29 (2012). https://doi.org/10.1007/s10800-011-0367-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-011-0367-z

Keywords

Navigation