Skip to main content
Log in

Electrochemical preparation and properties of nanostructured Co3O4 as supercapacitor material

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Nanostructured Co3O4 was prepared via a simple two-step process: cathodic electrodeposition of cobalt hydroxide from additive free nitrate bath and then heat treatment at 400 °C for 3 h. The prepared oxide product was characterized by powder X-ray diffraction, infrared spectroscopy, surface area measurement, scanning electron microscopy, and transmission electron microscopy. Morphological characterization showed that the oxide product was composed of porous nanoplates, and BET measurement displayed that the oxide plates have the average pore diameter and the surface area of 4.75 nm and 208.5 m2 g−1, respectively. The supercapacitive performance of the nanoplates was evaluated using cyclic voltammetry and charge–discharge tests. A specific capacitance as high as 393.6 F g−1 at the constant current density of 1 A g−1 and an excellent capacity retention (96.5% after 500 charge–discharge cycles) was obtained. These results indicate that Co3O4 nanoplates can be recognized as high-performance electrode materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rajeswari J, Kishore PS, Viswanathan B, Varadarajan TK (2009) Electrochem Commun 11:572

    Article  CAS  Google Scholar 

  2. El-Shobaky GA, Doheim MM, Ghozza AM, El-Boohy HA (2002) Mater Lett 57:525

    Article  CAS  Google Scholar 

  3. Lin YS, Lee KY, Chen KY, Huang YS (2009) Appl Surf Sci 256:1042

    Article  CAS  Google Scholar 

  4. Gao YY, Chen SL, Cao DX, Wang GL, Yin JL (2010) J Power Sour 195:1757

    Article  CAS  Google Scholar 

  5. Jiang R, Huang T, Liu J, Zhuang J, Yu A (2009) Electrochim Acta 54:3047

    Article  CAS  Google Scholar 

  6. Ko JM, Kim KM (2009) Mater Chem Phys 114:837

    Article  CAS  Google Scholar 

  7. Xu J, Gao L, Cao J, Wang W, Chen Z (2010) Electrochim Acta 56:732

    Article  CAS  Google Scholar 

  8. Aghazadeh M, Nozad Golikand A, Ghaemi M (2011) Int J Hydrogen Energy 36:8674

    Article  CAS  Google Scholar 

  9. Aghazadeh M, Nozad A, Adelkhani H, Ghaemi M (2010) J Electrochem Soc 157:D519

    Article  CAS  Google Scholar 

  10. Aghazadeh M, Nozad A, Ghaemi M, Yousefi T (2011) J Electrochem Soc 158:E136

    Article  CAS  Google Scholar 

  11. Aghazadeh M, Ghaemi M, Nozad Golikand A, Ghaemi M (2011) Mater Lett 65:2545

    Article  CAS  Google Scholar 

  12. Aghazadeh M, Nozad Golikand A, Ghaemi M, Yousefi T (2011) Mater Lett 65:1466

    Article  CAS  Google Scholar 

  13. Yousefi T, Nozad Golikand A, Mashhadizadeh MH, Aghazadeh M (2012) Curr Appl Phys 12:193

    Article  Google Scholar 

  14. Yousefi T, Nozad Golikand A, Mashhadizadeh MH, Aghazadeh M (2012) Curr Appl Phys 12:544

    Article  Google Scholar 

  15. Zhang F, Hao L, Fu QB, Zhang XG (2010) Chin J Inorg Chem 26:827

    Google Scholar 

  16. Wang L, Liu X, Wang X, Yang X, Lu L (2010) Curr Appl Phys 10:1422

    Article  Google Scholar 

  17. Cui L, Li J, Zhang XG (2009) J Appl Electrochem 39:1871

    Article  CAS  Google Scholar 

  18. Shinde VR, Mahadik SB, Gujar TP, Lokhande CD (2006) Appl Surf Sci 252:7487

    Article  CAS  Google Scholar 

  19. Srinivasan V, Weidner JW (2002) J Power Sour 108:15

    Article  CAS  Google Scholar 

  20. Tang CW, Wang CB, Chien SH (2008) Thermochim Acta 473:68

    Article  CAS  Google Scholar 

  21. Kim BY, Shim IB, Araci ZO, Saavedra SS, Monti OLA, Armstrong NR, Sahoo R, Srivastava DN, Pyun J (2010) J Am Chem Soc 132:3234

    Article  CAS  Google Scholar 

  22. Deng MJ, Huang FL, Sun IW, Tsai WT, Chang JK (2009) Nanotechnology 20:175602

    Article  Google Scholar 

  23. Lin C, Ritter JA, Popov BN (1998) J Electrochem Soc 145:4097

    Article  CAS  Google Scholar 

  24. Rouquerol F, Rouquerol J, Sing K (1999) Adsorption by powders and porous solids: principles, methodology and applications. Academic Press, San Diego

    Google Scholar 

  25. Soler-Illia GJ, Sanchez C, Lebeau B, Patarin J (2002) Chem Rev 102:4093

    Article  Google Scholar 

  26. Hussain AMP, Kumar A (2006) J Power Sour 161:1486

    Article  CAS  Google Scholar 

  27. Xue Y, Chen Y, Zhang ML, Yan YD (2008) Mater Lett 62:3884

    Article  CAS  Google Scholar 

  28. Zou WY, Wang W, He BI, Sun MI, Yin YS (2010) J Power Sour 195:7489

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Aghazadeh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aghazadeh, M. Electrochemical preparation and properties of nanostructured Co3O4 as supercapacitor material. J Appl Electrochem 42, 89–94 (2012). https://doi.org/10.1007/s10800-011-0375-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-011-0375-z

Keywords

Navigation