Skip to main content

Advertisement

Log in

Electrochemical behavior and electrodeposition of dysprosium in ionic liquids based on phosphonium cations

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The electrochemical behavior and the electrodeposition of dysprosium (Dy) in phosphonium-cation-based ionic liquid were investigated in this study. A new group of the room-temperature ionic liquids (RTILs) based on phosphonium cations with bis(trifluoromethylsulfonyl)amide anions was applied as novel electrolytic solutions. The cyclic voltammetric measurements resulted in one step reduction of the trivalent dysprosium ion in phosphonium-cation-based ionic liquid. On the other hand, no anodic peak ascribed to the oxidation of dysprosium metal was observed in this electroanalytical study. The diffusion coefficient and the activation energy for diffusion of the trivalent Dy complex in IL were estimated using semi-integral analysis, because it is important to analyze the diffusion properties to recover Dy through electrowinning methods. The diffusion coefficient of Dy(III) which was calculated to be 2.0 × 10−12 m2 s−1 at 25 °C, closed to that of the trivalent lanthanoid ion such as Eu(III) and Sm(III) in phosphonium-cation-based ionic liquid. In addition, the activation energy for diffusion was estimated to be 65 kJ mol−1 (0.5 M) and 49 kJ mol−1 (0.075 M). The estimated activation energy for diffusion was affected by the concentration of the electrolytic solution, since the RTILs had relatively strong electrostatic interactions between the metal cations and the solvent anions. Furthermore, the electrodeposition of Dy in phosphonium-cation-based IL was carried out using a two-electrode system constructed with a copper plate cathode and dysprosium metal anode. Energy dispersive X-ray analysis of electrodeposits showed a sharply peaked spectrum corresponding to the characteristic X-ray lines of Dy. In addition, the obtained Dy, with the exception of the surface layer, was confirmed to be in the metallic electronic state by X-ray photoelectron spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kim CH, Kwon IE, Park CH, Hwang YJ, Bae HS, Yu BY, Pyun CH, Hong GY (2000) J Alloys Compd 33:311

    CAS  Google Scholar 

  2. Ryunhong G, Miura N, Matsumoto H, Nakano R (2006) J Rare Earths 24:119

    Article  Google Scholar 

  3. Oono N, Sagawa M, Kasada R, Matsui H, Kimura A (2011) J Magn Magn Mater 323:297

    Article  CAS  Google Scholar 

  4. Miura K, Itoh M, Machida K (2008) J Alloys Compd 466:228

    Article  CAS  Google Scholar 

  5. Matsuura Y (2006) J Magn Magn Mater 303:344

    Article  CAS  Google Scholar 

  6. Zhu YL, Kozuma Y, Katayama Y, Miura T (2009) Electrochim Acta 54:7502

    Article  CAS  Google Scholar 

  7. Matsumiya M, Suda S, Tsunashima K, Sugiya M, Kishioka S, Matsuura H (2008) J Electroanal Chem 622:129

    Article  CAS  Google Scholar 

  8. Vega JA, Zhou J, Kohl PA (2009) J Electrochem Soc 156(4):A253

    Article  CAS  Google Scholar 

  9. Fukui R, Katayama Y, Miura T (2011) Electrochim Acta 56:190

    Article  Google Scholar 

  10. Komaba S, Yabuushi N, Ozeki T, Okushi K, Yui H, Konno K, Katayama Y, Miura T (2010) J Power Sources 195:6069

    Article  CAS  Google Scholar 

  11. Orita A, Kamijima K, Yoshida M, Dokko K, Watanabe M (2010) J Power Sources 196:3874

    Article  Google Scholar 

  12. MacFarlane DR, Meakin P, Shn J, Amini N, Forsyth M (1999) J Phys Chem B 103:4164

    Article  CAS  Google Scholar 

  13. Tsunashima K, Sugiya M (2007) Electrochem Commun 9:2354

    Article  Google Scholar 

  14. Tsunashima K, Sugiya M (2007) Electrochemistry 75(9):734

    Article  CAS  Google Scholar 

  15. Saïla A, Gibilaro M, Massot L, Chamelot P, Taxil P, Affoune AM (2010) J Electroanal Chem 642:150

    Article  Google Scholar 

  16. Castrillejo Y, Bermejo MR, Barrado AI, Pardo R, Barrado E, Martínez AM (2005) Electrochim Acta 50:2047

    Article  CAS  Google Scholar 

  17. Lodermeyer J, Multerer M, Zistler M, Jordan S, Gores HJ, Kipferl W, Diaconu E, Sperl M, Bayreuther G (2006) J Electrochem Soc 153:C242

    Article  CAS  Google Scholar 

  18. Tachikawa N, Katayama Y, Miura T (2007) J Electrochem Soc 154(11):F211

    Article  CAS  Google Scholar 

  19. Katayama Y, Miura T (2010) Electrochemistry 78(10):808

    Article  CAS  Google Scholar 

  20. Fujii K, Nonaka T, Akimoto Y, Umebayashi Y, Ishigro S (2008) Anal Sci 24:1377

    Article  CAS  Google Scholar 

  21. Zhu YL, Katayama Y, Miura T (2010) Electrochim Acta 55:9019

    Article  CAS  Google Scholar 

  22. O’Mahony AM, Silvester DS, Aldous L, Hardacre C, Compton RG (2008) J Chem Eng Data 53:2884

    Article  Google Scholar 

  23. Bard AJ, Faulkner LR (2001) Electrochemical methods, fundamentals and applications. John Wiley & Sons, New York, p 248

    Google Scholar 

  24. Andrade EN, Chiong YS (1936) Proc Phys 48:247

    Article  CAS  Google Scholar 

  25. Moslemzadeh N, Barrett SD (2002) J Electron Spectrosc Relat Phenom 127:161

    Article  CAS  Google Scholar 

  26. Handbook of X-ray photoelectron spectroscopy, ULVAC-PHI Inc

Download references

Acknowledgments

This study was partially supported by the research grant program on the Promotion of a Recycle-Based Society in 2010 from the Ministry of the Environment, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akifumi Kurachi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 33 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurachi, A., Matsumiya, M., Tsunashima, K. et al. Electrochemical behavior and electrodeposition of dysprosium in ionic liquids based on phosphonium cations. J Appl Electrochem 42, 961–968 (2012). https://doi.org/10.1007/s10800-012-0463-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-012-0463-8

Keywords

Navigation