Skip to main content

Advertisement

Log in

Graphite oxide/polypyrrole composite electrodes for achieving high energy density supercapacitors

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Fabrication and characterization of high energy density supercapacitor based on graphite oxide/polypyrrole (GO/PPy) composites is reported. Improvement in charge storage has been obtained by exfoliation of graphite oxide sheets via intercalation of polypyrrole. The formation of composite has been shown by the analysis of X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, and Fourier transfer of infrared spectroscopy data. Scanning electron and transmission electron microscopy clearly show sheet-like layered structure of graphite oxide surrounded by polypyrrole. Supercapacitors fabricated using this composite system result in a reduced equivalent series resistance value ~1.85 Ω. Such low value can be attributed to the intercalation of conducting polypyrrole into the graphite sheets. A specific capacitance of ~181 F g−1 in 1 M Na2SO4 aqueous electrolyte with a corresponding specific energy density of ~56.5 Wh kg−1 could be achieved. These values make GO-based materials suitable for their use as electrodes in high performance supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Panwar NL, Kaushik SC, Kothari S (2011) Role of renewable energy sources in environmental protection: a review. Renew Sustain Energy Rev 15:1513–1524. doi:10.1016/j.rser.2010.11.037

    Article  Google Scholar 

  2. Ibrahim H, Ilinca A, Perron J (2008) Energy storage systems—characteristics and comparisons. Renew Sustain Energy Rev 12:1221–1250. doi:10.1016/j.rser.2007.01.023

    Article  CAS  Google Scholar 

  3. Hall PJ, Bain EJ (2008) Energy-storage technologies and electricity generation. Energy Policy 36:4352–4355. doi:10.1016/j.enpol.2008.09.037

    Article  Google Scholar 

  4. Wang G, Zhang L, Zhang J (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41:797–828. doi:10.1039/c1cs15060j

    Article  CAS  Google Scholar 

  5. Chandra A (2012) Supercapacitors: an alternate technology for energy storage. Proc Natl Acad Sci, India, Sect A 82:79–90. doi:10.1007/s40010-012-0009-9

    Article  CAS  Google Scholar 

  6. Chandra A, Roberts AJ, Slade RCT (2008) Studies of nanostructures and conductivity in the system V x Mo1−x O y . Solid State Commun 147:83. doi:10.1016/j.ssc.2008.05.012

    Article  CAS  Google Scholar 

  7. Arbizzani C, Mastragostino M, Soavi F (2001) New trends in electrochemical supercapacitors. J Power Sources 100:164–170. doi:10.1016/S0378-7753(01)00892-8

    Article  CAS  Google Scholar 

  8. Zhang LL, Zhao XS (2009) Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 38:2520–2531. doi:10.1039/b813846j

    Article  CAS  Google Scholar 

  9. Chandra A, Roberts AJ, Yee ELH, Slade RCT (2009) Nanostructured oxides for energy storage applications in batteries and supercapacitors. Pure Appl Chem 81:1489–1498. doi:10.1351/PAC-CON-08-08-20

    Article  CAS  Google Scholar 

  10. Frackowiak E, Beguin F (2001) Carbon materials for the electrochemical storage of energy in capacitors. Carbon 39:937–950. doi:S0008-6223(00)00183-4

    Article  CAS  Google Scholar 

  11. Frackowiak E (2007) Carbon materials for supercapacitor application. Phys Chem Chem Phys 9:1774–1785. doi:10.1039/b618139m

    Article  CAS  Google Scholar 

  12. Li L, Liu E, Li J, Yang Y, Shen H, Huang Z, Xiang X, Li W (2010) A doped activated carbon prepared from polyaniline for high performance supercapacitors. J Power Sources 195:1516–1521. doi:10.1016/j.jpowsour.2009.09.016

    Article  CAS  Google Scholar 

  13. Rudge A, Davey J, Raistrick I, Gottesfeld S, Ferraris JP (1994) Conducting polymers as active materials in electrochemical capacitors. J Power Sources 47:89–107. doi:10.1016/0378-7753(94)80053-7

    Article  CAS  Google Scholar 

  14. Lokhande CD, Dubal DP, Joo OS (2011) Metal oxide thin film based supercapacitors. Curr Appl Phys 11:1–16. doi:10.1016/j.cap.2010.12.001

    Article  Google Scholar 

  15. Cross A, Morel A, Cormie A, Hollenkamp T, Donne S (2011) Enhanced manganese dioxide supercapacitor electrodes produced by electrodeposition. J Power Sources 196:7847–7853. doi:10.1016/j.jpowsour.2011.04.049

    Article  CAS  Google Scholar 

  16. Ji X, Hallam PM, Houssein SM, Kadara R, Lang L, Banks CE (2012) Printable thin film supercapacitors utilizing single crystal cobalt hydroxide nanosheets. RSC Adv 2:1508–1515. doi:10.1039/c1ra01061a

    Article  CAS  Google Scholar 

  17. Vivekchand SRC, Rout CS, Subrahmanyam KS, Govindaraj A, Rao CNR (2008) Graphene-based electrochemical supercapacitors. J Chem Sci 120:9–13. doi:10.1007/s12039-008-0002-7

    Article  CAS  Google Scholar 

  18. Li Y, Zijll MV, Chiang S, Pan N (2011) KOH modified graphene nanosheets for supercapacitor electrodes. J Power Sources 196:6003–6006. doi:10.1016/j.jpowsour.2011.02.092

    Article  CAS  Google Scholar 

  19. Jeong HK, Jin M, Ra EJ, Sheem KY, Han GH, Arepalli S, Lee YH (2010) Enhanced electric double layer capacitance of graphite oxide intercalated by poly(sodium 4-styrensulfonate) with high cycle stability. ACS Nano 4:1162–1166. doi:10.1021/nn901790f

    Article  CAS  Google Scholar 

  20. Tien CP, Teng H (2010) Polymer/graphite oxide composites as high-performance materials for electric double layer capacitors. J Power Sources 195:2414–2418. doi:10.1016/j.jpowsour.2009.11.001

    Article  CAS  Google Scholar 

  21. Wang J, Xu Y, Wang J, Du X (2011) Toward a high specific power and high stability polypyrrole supercapacitors. Synth Met 161:1141–1144. doi:10.1016/j.synthmet.2011.01.011

    Article  CAS  Google Scholar 

  22. Peng XY, Liu XX, Diamond D, Lau KT (2011) Synthesis of electrochemically-reduced graphene oxide film with controllable size and thickness and its use in supercapacitor. Carbon 49:3488–3496. doi:10.1016/j.carbon.2011.04.047

    Article  CAS  Google Scholar 

  23. Xing W, Huang CC, Zhuo SP, Yuan X, Wang GQ, Hulicova-Jurcakova D, Yan ZF, Lu GQ (2009) Hierarchical porous carbons with high performance for supercapacitor electrodes. Carbon 47:1715–1722. doi:10.1016/j.carbon.2009.02.024

    Article  CAS  Google Scholar 

  24. Chen Y, Zhang X, Zhang H, Sun X, Zhang D, Ma Y (2012) High-performance supercapacitors based on a graphene-activated carbon composite prepared by chemical activation. RSC Adv 2:7747–7753. doi:10.1039/c2ra20667f

    Article  CAS  Google Scholar 

  25. Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, Alemany LB, Lu W, Tour JM (2010) Improved synthesis of graphene oxide. ACS Nano 4:4806–4814. doi:10.1021/nn1006368

    Article  CAS  Google Scholar 

  26. Bissessur R, Liu PKY, Scully SF (2006) Intercalation of polypyrrole into graphite oxide. Synth Met 156:1023–1027. doi:10.1016/j.synthmet.2006.06.024

    Article  CAS  Google Scholar 

  27. Kudin KN, Ozbas B, Schniepp HC, Prud’homme RK, Aksay IA, Car R (2007) Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett 8:36–41. doi:10.1021/nl071822y

    Article  Google Scholar 

  28. Bose S, Kuila T, Uddin ME, Kim NH, Lau AKT, Lee JH (2010) In situ synthesis and characterization of electrically conductive polypyrrole/graphene nanocomposites. Polymer 51:5921–5928. doi:10.1016/j.polymer.2010.10.014

    Article  CAS  Google Scholar 

  29. Yang S, Wu X, Chen C, Dong H, Hu W, Wang X (2012) Spherical α-Ni(OH)2 nanoarchitecture grown on graphene as advanced electrochemical pseudocapacitor materials. Chem Commun 48:2773–2775. doi:10.1039/C2CC16565A

    Article  CAS  Google Scholar 

  30. Gu Z, Zhang L, Li C (2009) Preparation of highly conductive polypyrrole/graphite oxide composites via in situ polymerization. J Macromol Sci B 48:1093–1102. doi:10.1080/00222340903035576

    Article  CAS  Google Scholar 

  31. Demarconnay L, Raymundo-Pinero E, Beguin F (2010) A symmetric carbon/carbon supercapacitor operating at 1.6 V by using a neutral aqueous solution. Electrochem Commun 12:1275–1278. doi:10.1016/j.elecom.2010.06.036

    Article  CAS  Google Scholar 

  32. Alvi F, Ram MK, Basnayaka PA, Stefanakos E, Goswami Y, Kumar A (2011) Graphene–polyethylenedioxythiophene conducting polymer nanocomposite based supercapacitor. Electrochim Acta 56:9406–9412. doi:10.1016/j.electacta.2011.08.024

    Article  CAS  Google Scholar 

  33. Hashmi SA, Kumar A, Tripathi SK (2005) Investigations on electrochemical supercapacitors using polypyrrole redox electrodes and PMMA based gel electrolytes. Eur Polym J 41:1373–1379. doi:10.1016/j.eurpolymj.2004.12.013

    Article  CAS  Google Scholar 

  34. Zhang D, Zhang X, Chen Y, Yu P, Wang C, Ma Y (2011) Enhanced capacitance and rate capability of graphene/polypyrrole composite as electrode material for supercapacitors. J Power Sources 196:5990–5996. doi:10.1016/j.jpowsour.2011.02.090

    Article  CAS  Google Scholar 

  35. Davies A, Audette P, Farrow B, Hassan F, Chen Z, Choi JY, Yu A (2011) Graphene-based flexible supercapacitors: pulse-electropolymerization of polypyrrole on free-standing graphene films. J Phys Chem C115:17612–17620. doi:10.1021/jp205568v

    Google Scholar 

  36. Wang Y, Shi Z, Huang Y, Ma Y, Wang C, Chen M, Chen Y (2009) Supercapacitor devices based on graphene materials. J Phys Chem C 113:13103–13107. doi:10.1021/jp902214f

    Article  CAS  Google Scholar 

  37. Wang J, Xu Y, Zhu J, Ren P (2012) Electrochemical in situ polymerization of reduced graphene oxide/polypyrrole composite with high power density. J Power Sources 208:138–143. doi:10.1016/j.jpowsour.2012.02.018

    Article  CAS  Google Scholar 

  38. Wang W, Hao Q, Lei W, Xia X, Wang X (2012) Graphene/SnO2/polypyrrole ternary nanocomposites as supercapacitor electrode materials. RSC Adv 2:10268–10274. doi:10.1039/C2RA21292G

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Arvinder Singh would like to thank CSIR (India) for the award of Junior Research Fellowship. Authors also acknowledge the FIST program of DST (India) for sanctioning funds for XPS instrument. We also would like to thank Prof. S. A. Hashmi, Department of Physics and Astrophysics, University of Delhi, Delhi for providing facilities to perform electrochemical measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arvinder Singh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 157 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, A., Chandra, A. Graphite oxide/polypyrrole composite electrodes for achieving high energy density supercapacitors. J Appl Electrochem 43, 773–782 (2013). https://doi.org/10.1007/s10800-013-0573-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-013-0573-y

Keywords

Navigation