Skip to main content
Log in

A selective determination of levodopa in the presence of ascorbic acid and uric acid using a glassy carbon electrode modified with reduced graphene oxide

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

A selective determination of levodopa (LD) in the presence of ascorbic acid (AA) and uric acid (UA) has been investigated at a glassy carbon electrode modified with reduced graphene oxide (rGO). The graphene oxide was synthesized chemically by Hummers method and characterized by energy-filtered transmission electron microscopy (EF-TEM). The reduced graphene oxide modified glassy carbon electrode (rGO/GCE) showed excellent electrochemical performance in the simultaneous electrochemical detection of LD, AA, and UA due to the unique properties of graphene, such as large surface area, facile electronic transport and high electrocatalytic activity. The redox characteristics of rGO/GCE were investigated with cyclic voltammetry (CV) and differential pulse voltammetry (DPV). Well-resolved oxidation peak potentials, corresponding to the oxidation of AA, LD, and UA, were observed from their mixture solution at 0.098, 0.285, and 0.423 V, respectively. The rGO/GCE showed that LD can be detected without the interference of AA and UA. Under the optimized conditions, the oxidation peak current of LD is linear with the concentration of LD from 2.0 to 100 μM with the detection limit of 1.13 μM (S/N = 3). The present electrode system was also successfully applied to direct determination of LD in commercially available tablets and urine samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hardy J, Gwinn-Hardy K (1998) Genetic classification of primary neurodegenerative disease. Science 282:1075–1079

    Article  CAS  Google Scholar 

  2. Schapira AHV (2005) Present and future drug treatment for Parkinson’s disease. J Neurol Neurosurg Psychiatry 76:1472–1478

    Article  CAS  Google Scholar 

  3. Katzenschlager R, Lees AJ (2002) Treatment of Parkinson’s disease: levodopa as the first choice. J Neurol 249(2):19–24

    CAS  Google Scholar 

  4. Fauci AS, Braunwald E, Kasper DL, Hauser SL, Longo DL, Jameson JL, Loscalzo J (2008) Harrison’s principles of internal medicine, Chap 366, 17th edn. McGraw-Hills, New York

    Google Scholar 

  5. Barbeau A (1974) The clinical physiology of side effects in long-term L-DOPA therapy. Adv Neurol 5:347–365

    CAS  Google Scholar 

  6. Laitinen LV, Bergenheim AT, Hariz MI (1992) Leksell’s posteroventral pallidotomy in the treatment of Parkinson’s disease. J Neurosurg 76:53–61

    Article  CAS  Google Scholar 

  7. Melamed E, Offen D, Shirvan A, Ziv I (2000) Levodopa—an exotoxin or a therapeutic drug? J Neurol 247:135–139

    Google Scholar 

  8. Zhu M, Huang XM, Li J, Shen HX (1997) Peroxidase-based spectrophotometric methods for the determination of ascorbic acid, norepinephrine, epinephrine, dopamine and levodopa. Anal Chim Acta 357:261–267

    Article  CAS  Google Scholar 

  9. Grunhut M, Centurion ME, Fragoso WD, Almeida LF, de Araujo MCU, Band BSF (2008) Flow-batch technique for the simultaneous enzymatic determination of levodopa and carbidopa in pharmaceuticals using PLS and successive projections algorithm. Talanta 75:950–958

    Article  CAS  Google Scholar 

  10. Kaur K, Malik AK, Singh B, Godarzi M (2009) Simultaneous spectrophotometric determination of carbidopa and levodopa by partial least squares regression, principal component regression and least squares support vector machine methods. Thai J Pharm Sci 33:123–136

    CAS  Google Scholar 

  11. Marques KL, Santos JL, Lopes JA, Lima JL (2008) Simultaneous chemiluminometric determination of levodopa and benserazide in a multi-pumping flow system with multivariate calibration. Anal Sci 24:985–991

    Article  CAS  Google Scholar 

  12. Zhao S, Bai W, Wang B, He M (2007) Determination of levodopa by capillary electrophoresis with chemiluminescence detection. Tlanta 73:142–146

    Article  CAS  Google Scholar 

  13. Cannazza G, Di Stefano A, Mosciatti B, Braghiroli D, Baraldi M, Pinnen F, Sozio P, Benatti C, Parenti C (2005) Detection of levodopa, dopamine and its metabolites in rat striatum dialysates following peripheral administration of L-DOPA prodrugs by mean of HPLC-EC. J Pharm Biomed Anal 36:1079–1084

    Article  CAS  Google Scholar 

  14. Li S, Wu H, Yu Y, Li Y, Nie J, Fu H, Yu R (2010) Quantitative analysis of levodopa, carbidopa and methyldopa in human plasma samples using HPLC-DAD combined with second-order calibration based on alternating trilinear decomposition algorithm. Talanta 81:805–812

    Article  CAS  Google Scholar 

  15. Muzzi C, Bertocci E, Terzuoli L, Porcelli B, Ciari I, Pagani R, Guerranti R (2008) Simultaneous determination of serum concentrations of levodopa, dopamine, 3-O-methyldopa and α-methyldopa by HPLC. Biomed Pharmacother 62:253–258

    Article  CAS  Google Scholar 

  16. Talebpour Z, Haghgoo S, Shamsipur M (2004) 1H nuclear magnetic resonance spectroscopy analysis for simultaneous determination of levodopa, carbidopa and methyldopa in human serum and pharmaceutical formulations. Anal Chim Acta 506:97–104

    Article  CAS  Google Scholar 

  17. Thiagarajan S, Chen SM (2007) Preparation and characterization of PtAu hybrid film modified electrodes and their use in simultaneous determination of dopamine, ascorbic acid and uric acid. Talanta 74:212–222

    Article  CAS  Google Scholar 

  18. Yan X, Pan D, Wang H, Bo X, Guo L (2011) Electrochemical determination of L-dopa at cobalt hexacyanoferrate/large-mesopore carbon composite modified electrode. J Electroanal Chem 663:36–42

    Article  CAS  Google Scholar 

  19. Babaei A, Babazadeh M (2011) Multi-walled carbon nanotubes/chitosan polymer composite modified glassy carbon electrode for sensitive simultaneous determination of levodopa and morphine. Anal Methods 3:2400–2405

    Article  CAS  Google Scholar 

  20. Ensafi AA, Arabzadeh A, Karimi-Maleh H (2010) Sequential determination of benserazide and levodopa by voltammetric method using chloranil as a mediator. J Braz Chem Soc 21:1572–1580

    Article  CAS  Google Scholar 

  21. Teixeira MFS, Bergamini MF, Marques CMP, Bocchi N (2004) Voltammetric determination of L-dopa using an electrode modified with trinuclear ruthenium ammine complex (Ru-red) supported on Y-type zeolite. Talanta 63:1083–1088

    Article  CAS  Google Scholar 

  22. Yaghoubian H, Karimi-Maleh H, Khalilzadeh MA, Karimi F (2009) Electrocatalytic oxidation of levodopa at a ferrocene modified carbon nanotube paste electrode. Int J Electrochem Sci 4:993–1003

    Google Scholar 

  23. Hu G, Chen L, Guo Y, Wang X, Shao S (2010) Selective determination of L-dopa in the presence of uric acid and ascorbic acid at a gold nanoparticle self-assembled carbon nanotube-modified pyrolytic graphite electrode. Sens Actuators B 55:4711–4716

    CAS  Google Scholar 

  24. Shahrokhian S, Asadian E (2009) Electrochemical determination of l-dopa in the presence of ascorbic acid on the surface of the glassy carbon electrode modified by a bilayer of multi-walled carbon nanotube and poly-pyrrole doped with tiron. J Electroanal Chem 636:40–46

    Article  CAS  Google Scholar 

  25. Raoof JB, Ojani R, Amiri-Aref M, Baghayeri M (2012) Electrodeposition of quercetin at a multi-walled carbon nanotubes modified glassy carbon electrode as a novel and efficient voltammetric sensor for simultaneous determination of levodopa, uric acid and tyramine. Sens Actuators B 166–167:508–518

    Article  CAS  Google Scholar 

  26. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    Article  CAS  Google Scholar 

  27. Heersche HB, Jarillo-Herrero P, Oostinga JB, Vandersypen LMK, Morpurgo AF (2007) Bipolar supercurrent in graphene. Nature 446:56–59

    Article  CAS  Google Scholar 

  28. Balandin AA, Ghosh S, Bao WZ, Calizo I, Teweldebrhan D, Miao F, Lau CN (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8:902–907

    Article  CAS  Google Scholar 

  29. Han D, Han T, Shan C, Ivaska A, Niu L (2010) Simultaneou determination of ascorbic acid, dopamine and uric acid with chitosan-graphene modified electrode. Electroanalysis 22:2001–2008

    Article  CAS  Google Scholar 

  30. Cui F, Zhang X (2012) Electrochemical sensor for epinephrine based on a glassy carbon electrode modified with graphene/gold nanocomposites. J Electroanal Chem 669:35–41

    Article  CAS  Google Scholar 

  31. Tian X, Cheng C, Yuan H, Du J, Xiao D, Xie S, Choi MMF (2012) Simultaneous determination of L-ascorbic acid, dopamine and uric acid with gold nanoparticles-β-cyclodextrin-graphene-modified electrode by square wave voltammetry. Talanta 93:79–85

    Article  CAS  Google Scholar 

  32. Li Y, Ran G, Yi WJ, Luo HQ, Li NB (2012) A glassy carbon electrode modified with graphene and poly(acridine red) for sensing uric acid. Microchim Acta 178:115–121

    Article  CAS  Google Scholar 

  33. Guo S, Wen D, Zhai Y, Dong S, Wang E (2010) Platinum nanoparticle ensemble-on-graphene hybrid nanosheet: one-pot, rapid synthesis, and used as new electrode material for electrochemical sensing. ACS Nano 4:3959–3968

    Article  CAS  Google Scholar 

  34. Kim YR, Bong S, Kang YJ, Yang Y, Mahajan RK, Kim JS, Kim H (2010) Electrochemical detection of dopamine in the presence of ascorbic acid using graphene modified electrodes. Biosens Bioelectron 25:2366–2369

    Article  CAS  Google Scholar 

  35. Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339

    Article  CAS  Google Scholar 

  36. Li M, Huang X, Wu C, Hu H, Jiang P, Tanaka T (2012) Fabrication of two-dimensional hybrid sheets by decorating insulating pani on reduced graphene oxide for polymer nanocomposites with low dielectric loss and high dielectric constant. J Mater Chem 22:23477–23484

    Article  CAS  Google Scholar 

  37. Bard AJ, Faulkner LR (2001) Electrochemical methods fundamentals and applications, 2nd edn. Wiley, New York

    Google Scholar 

  38. Venton BJ, Wightman RM (2003) Psychoanalytical electrochemistry: dopamine and behavior. Anal Chem 75:414A–421A

    Article  CAS  Google Scholar 

  39. Manjunatha R, Suresh GS, Melo JS, D’Souza SF, Venkatesha TV (2010) Simultaneous determination of ascorbic acid, dopamine and uric acid using polystyrene sulfonate wrapped multiwalled carbon nanotubes bound to graphite electrode through layer-by-layer technique. Sens Actuators B 145:643–650

    Article  CAS  Google Scholar 

  40. Yan XX, Pang DW, Lu ZX, Lu JQ, Tong H (2004) Electrochemical behavior of L-dopa at single-wall carbon nanotube-modified glassy carbon electrodes. J Electroanal Chem 569:47–52

    Article  CAS  Google Scholar 

  41. Babaei A, Sohrabi M, Taheri AR (2013) Highly sensitive simultaneous determination of L-dopa and paracetamol using a glassy carbon electrode modified with a composite of nickel hydroxide nanoparticles/multi-walled carbon nanotubes. J Electroanal Chem 698:45–51

    Article  CAS  Google Scholar 

  42. Babaei A, Babazadeh M (2011) A selective simultaneous determination of levodopa and serotonin using a glassy carbon electrode modified with multiwalled carbon nanotube/chitosan composite. Electroanalysis 23:1726–1735

    Article  CAS  Google Scholar 

  43. Naushad Mu, Gupta VK, Wabaidur SM, Alothman ZA (2013) Simultaneous determination of benserazide and levodopa in pharmaceutical tablet, human serum and urine sample by differential pulse voltammetry using modified glassy carbon electrode. Int J Electrochem Sci 8:297–311

    CAS  Google Scholar 

  44. Mazloum-Ardakani M, Ganjipour B, Beitollahi H, Amini MK, Mirkhalaf F, Naeimi H, Nejati-Barzoki M (2011) Simultaneous determination of levodopa, carbidopa and tryptophan using nanostructured electrochemical sensor based on novel hydroquinone and carbon nanotubes: application to the analysis of some real samples. Electrochim Acta 56:9113–9120

    Article  CAS  Google Scholar 

  45. Babaei A, Taheri AR, Aminikhah M (2013) Nanomolar simultaneous determination of levodopa and serotonin at a novel carbon ionic liquid electrode modified with Co(OH)2 nanoparticles and multi-walled carbon nanotubes. Electrochim Acta 90:317–325

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hun-Gi Hong.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 314 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yi, SY., Lee, JH. & Hong, HG. A selective determination of levodopa in the presence of ascorbic acid and uric acid using a glassy carbon electrode modified with reduced graphene oxide. J Appl Electrochem 44, 589–597 (2014). https://doi.org/10.1007/s10800-013-0649-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-013-0649-8

Keywords

Navigation