Skip to main content
Log in

Determination of lisinopril using β-cyclodextrin/graphene oxide-SO3H modified glassy carbon electrode

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

An electrochemical method has been successfully demonstrated for sensitive determination of lisinopril with β-cyclodextrin-graphene oxide-SO3H composite modified glassy carbon electrode (β-CD/GO-SO3H/GCE). Cyclic voltammetry, differential pulse voltammetry, and chronocoulometry were used to investigate the electrochemical behavior of lisinopril at β-CD/GO-SO3H/GCE. The cyclic voltammetric results indicate that β-CD/GO-SO3H/GCE can remarkably enhance electroactivity toward the oxidation of lisinopril in buffer solutions. The electrochemical behavior was further exploited as a sensitive detection scheme for the lisinopril determination by differential-pulse voltammetry. Under optimized conditions, the concentration range and detection limit were 0.21–190.4 and 0.11 µM (S/N = 3), respectively. The method was successfully applied to assay the drug in human serum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lancaster SG, Todd PA (1988) Lisinopril.A review of its pharmacology and clinical efficacy in the early management of acute myocardial infarction. Drugs 35:646–669

    Article  CAS  Google Scholar 

  2. Qin W, Zhang Z, Tian Y, Xu F, Wang N, Chen Y (2007) Rapid quantification of lisinopril in human plasma by liquid chromatography/tandem mass spectrometry. Biomed Chromatogr 21:415–421

    Article  CAS  Google Scholar 

  3. El-Gindy A, Ashour A, Abdel-Fattah L (2001) Spectrophotometric, septrofluorimetric and LC determination of lisinopril. J Pharm Biomed Anal 25:913–922

    Article  CAS  Google Scholar 

  4. El-Yazbi FA, Abdine HH, Shaalan RA (1999) Spectrophotometric and spectrofluorometric methods for the assay of lisinopril in single and multicomponent pharmaceutical dosage forms. J Pharm Biomed Anal 19:819–827

    Article  CAS  Google Scholar 

  5. Qin XZ, Nguyen DST, Ip DP (1993) Separation of lisinopril and its RSS diastereoisomer by micellar electrokinetic chromatography. J liquid Chromatogr 16:3713–3734

    Article  CAS  Google Scholar 

  6. Kalal HS, Rafiei J, Bani F (2010) Optimization conditions for determination of cosmetic preservatives using ion-exclusion chromatography. Int J Environ Res 4:289–296

    Google Scholar 

  7. Avadhamulu AB, Pantulu ARR (1993) Gas liquid chromatographic estimation of lisinopril in its pharmaceutical dosage forms. Indian Drugs 30:646–649

    Google Scholar 

  8. Padua AAF, Barrientos-Astigarraga RE, Rezende VM (2004) Lisinopril quantification in human plasma by liquid chromatography-electrospray tandem mass spectrometry. J Chromatogr B 809:211–216

    Article  CAS  Google Scholar 

  9. Gustafsson S, Erriksson BM, Nilsson I (1990) Multiple peak formation in reversed-phase liquid chromatography of ramipril and ramiprilate. J Chromatogr A 506:75–83

    Article  CAS  Google Scholar 

  10. Wong YC, Charles BG (1995) Determination of the angiotensin-converting enzyme inhibitor lisinopril in urine using solid-phase extraction and reversed-phase high-performance liquid chromatography. J Chromatogr B 673:306–310

    Article  CAS  Google Scholar 

  11. Qin W, Zhang Z, Tian Y, Xu F (2007) Rapid quantification of lisinopril in human plasma by liquid chromatography/tandem mass spectrometry. Biomed Chromatogr 21:415–421

    Article  CAS  Google Scholar 

  12. Yuan AS, Gilbert JD (1996) Time-resolved fluoroimmunoassay for the determination of lisinopril and enalaprilat in human serum. J Pharm Biomed Anal 14:773–781

    Article  CAS  Google Scholar 

  13. Worland PJ, Jarrot B (1986) Radioimmunoassay for the quantitation of lisinopril and enalaprilat. J Pharm Sci 75:512–516

    Article  CAS  Google Scholar 

  14. Shepley K, Rocci ML, Patrick H (1988) An optimized fluoroenzymatic assay for the determination of angiotensin converting enzyme inhibitors in biological fluids. J Pharm Biomed Anal 6:241–251

    Article  CAS  Google Scholar 

  15. Bonazzi D, Gotti R, Andrisano V (1997) Analysis of ACE inhibitors in pharmaceutical dosage forms by derivative UV spectroscopy and liquid chromatography (HPLC). J Pharm Biomed Anal 16:431–438

    Article  CAS  Google Scholar 

  16. Abdel-Fattah L, El-Kosasy A, Abdel-Aziz L (2010) Novel ion selective electrodes for determination of lisinopril: A study of plasma and plasma proteins effect. J Am Sci 6:1115–1121

    Google Scholar 

  17. Shadjou N, Hasanzadeh M, Saghatforoush LA, Mehdizadeh R, Jouyban A (2011) A verapamil electrochemical sensor based on magnetic mobile crystalline material-41 grafted by sulfonic acid. Electrochim Acta 58:336–347

    Article  CAS  Google Scholar 

  18. Hasanzadeh M, Pournaghi-Azar MH, Shadjou N, Jouyban A (2014) Electropolymerization of taurine on gold surface and its sensory application for determination of captopril in undiluted human serum. Mater Sci Eng C 38:197–205

    Article  CAS  Google Scholar 

  19. Hasanzadeh M, Pournaghi-Azar MH, Shadjou N, Jouyban A (2014) A new mechanistic approach to elucidate furosemide electrooxidation on magnetic nanoparticles loaded on graphene oxide modified glassy carbon electrode. RSC Adv 4:6580–6590

    Google Scholar 

  20. Funasaki N, Ishikawa S, Neya S (2008) Advances in physical chemistry and pharmaceutical applications of cyclodextrins. Pure Appl Chem 80:1511–1524

    Article  CAS  Google Scholar 

  21. Irie T, Uekama K (1997) Pharmaceutical applications of cyclodextrins. III. Toxicological issues and safety evaluation. J Pharm Sci 86:147–162

    Article  CAS  Google Scholar 

  22. Jones SP, Grant DJW, Hadgraft J, Parr G (1984) Cyclodextrins in the pharmaceutical sciences part II. Acta Pharm Tech 30:263–277

    CAS  Google Scholar 

  23. Loftsson T, Brewster ME (1996) Pharmaceutical application of cyclodextrin: drug solubilization and stabilization. J Pharm Sci 85:1017–1025

    Article  CAS  Google Scholar 

  24. Loftsson T, Duchêne D (2007) Cyclodextrins and their pharmaceutical applications. Int J Pharm 329:1–11

    Article  CAS  Google Scholar 

  25. Rajewski RA, Stella VJ (1996) Pharmaceutical applications of cyclodextrins: 2. In vivo drug delivery. J Pharm Sci 85:1142–1169

    Article  CAS  Google Scholar 

  26. Uekama K (1985) Pharmaceutical applications of methylated cyclodextrins. Pharm Int 6:61–65

    CAS  Google Scholar 

  27. Uekama K (2002) Recent aspects of pharmaceutical application of cyclodextrins. J Inclusion Phenomena 44:3–7

    Article  CAS  Google Scholar 

  28. Uekama K (2004) Pharmaceutical application of cyclodextrins as multifunctional drug carriers. Yakugaku Zasshi 124:909–935

    Article  CAS  Google Scholar 

  29. Bekers O, Uijtendaal EV, Beijnen JH, Bult A, Underberg WJM (1991) Cyclodextrins in the pharmaceutical field, Drug Dev. Ind Pharm 17:1503–1509

    Article  CAS  Google Scholar 

  30. Hamilton LM, Kelly CT, Fogarty WM (1998) Raw starch degradation by the non-raw starch-adsorbing bacterial alpha amylase of Bacillus sp. IMD 434. Carbohyd Res 314:251–257

    Article  CAS  Google Scholar 

  31. Rendleman JA Jr (1997) Enhancement of cyclodextrin production through use of debranching enzymes. Biotech Appl Biochem 26:51–61

    CAS  Google Scholar 

  32. Kim TJ, Kim BC, Lee HS (1997) Production of cyclodextrin using raw corn starch without a pretreatment. Enzyme Microbiol Technol 20:506–509

    Article  CAS  Google Scholar 

  33. Flaschel E, Landert JP, Spiesser D, Renken A (1984) The production of alpha-cyclodextrin by enzymatic degradation of starch. Ann N Y Acad Sci 434:70–77

    Article  CAS  Google Scholar 

  34. Szejtli JP (2004) Past, present, and future of cyclodextrin research. Pure Appl Chem 76:1825–1845

    Article  CAS  Google Scholar 

  35. Ferancová A, Labuda J (2001) Cyclodextrins as electrode modifiers. Anal Bioanal Chem 370:1–10

    Article  Google Scholar 

  36. Ferancová A, Labuda J, Barek J, Zima J (2002) Cyclodextrins as supramolecular complexants in electroanalytical chemistry: Review from years 1995-2001. Chem Listy 96:856–862

    Google Scholar 

  37. Bersier PM, Bersier J, Klingert B (1991) Electrochemistry of cyclodextrins and cyclodextrin inclusion complexes. Electroanalysis 3:443–455

    Article  CAS  Google Scholar 

  38. Szejtli J (1982) Cyclodextrins and their inclusion complexes. Akademiai Kiado, Budapest

    Google Scholar 

  39. Inoue Y, Hakushi T, Liu Y, Tong LH, Shen BJ, Jin DS (1993) Calorimetric titration of inclusion complexation with modified beta.-cyclodextrins. Enthalpy-entropy compensation in host-guest complexation: from ionophore to cyclodextrin and cyclophane. J Am Chem Soc 115:475–481

    Article  CAS  Google Scholar 

  40. Manning CM, Patel K, Borchardt RT (1989) Stability of protein pharmaceuticals. Pharm Res 6:903–917

    Article  CAS  Google Scholar 

  41. Saenger W (1984) Structural aspects of cyclodextrins and their inclusion complexes. In: Atwood JL, Davies JED, MacNicol DD (eds) Inclusion compounds: Structural aspects of inclusion compounds formed by organic host lattices. Academic Press, London, pp 231–259

    Google Scholar 

  42. Hea J, Yang Y, Yang X, Liu Y, Liu Z, Shen G, Yu R (2006) β-Cyclodextrin incorporated carbon nanotube-modified electrode as an electrochemical sensor for rutin. Sens Actuators B 114:94–100

    Article  Google Scholar 

  43. Guo Y, Chen Y, Zhao Q, Shuang S, Dong C (2011) Electrochemical sensor for ultrasensitive determination of doxorubicin and methotrexate based on cyclodextrin-graphene hybrid nanosheets. Electroanalysis 23:2400–2407

    Article  CAS  Google Scholar 

  44. Omidinia E, Shadjou N, Hasanzadeh M (2013) (Fe3O4)-graphene oxide as a novel magnetic nanomaterial for non-enzymatic determination of phenylalanine. Mat Sci Eng C 33:4624–4632

    Article  CAS  Google Scholar 

  45. Guo Y, Guo S, Ren J, Zhai Y, Dong S, Wang E (2010) Cyclodextrin functionalized graphene nanosheets with high supramolecular recognition capability: synthesis and host-guest inclusion for enhanced electrochemical performance. ACS Nano 4:4001–4010

    Article  CAS  Google Scholar 

  46. Laviron E (1979) General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J Electroanal Chem 101:19–28

    Article  CAS  Google Scholar 

  47. Bard AJ, Faulkner LR (2001) Electrochemical methods. Wiley, New York

    Google Scholar 

  48. Grimshow J (2000) Electrochemical reactions mechanisms in organic chemistry. Elsevier, Amsterdam, p 276

    Google Scholar 

  49. Adams RN (1969) Electrochemistry at solid electrodes. Marcel Dekker, New York

    Google Scholar 

  50. Liu YX, Shou D, Chen ML, Chen ZD, Zhang PM, Zhu Y (2012) Determination of lisinopril using anion exchange chromatography with integrated pulsed amperometric detection. Chin Chem Lett 23:335–338

    Article  Google Scholar 

Download references

Acknowledgments

This is a report of a database from the thesis entitled “Development of sensitive, routine and reliable methods for determination of cardiovascular drugs in biological samples” registered in Drug Applied Research Center. We gratefully acknowledge the financial support of this work by the Drug Applied Research Center, Tabriz University of Medical Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohammad Hasanzadeh or Abolghasem Jouyban.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasanzadeh, M., Pournaghi-Azar, M.H., Shadjou, N. et al. Determination of lisinopril using β-cyclodextrin/graphene oxide-SO3H modified glassy carbon electrode. J Appl Electrochem 44, 821–830 (2014). https://doi.org/10.1007/s10800-014-0689-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-014-0689-8

Keywords

Navigation