Skip to main content
Log in

The effects of curing temperature on bilayer and monolayer hybrid films: mechanical and electrochemical properties

  • Review Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Thermal curing contributes to the formation and performance of hybrid films (HFs), because it enhances barrier properties by reticular densification, which originates from a less porous layer, and improves corrosion protection and mechanical properties. Increasing the number of deposited layers further enhances these properties. In this work, a HF formed by an alkoxide precursor solution of 3-(trimethoxysilylpropyl) methacrylate and tetraethoxysilane with cerium nitrate and polyethylene glycol was applied to the galvanized steel. The films were obtained by either monolayer or bilayer dip coating, and they were cured at different temperatures (60 and 90 °C) for 20 min. The results indicate that both the temperature and the number of layers interfere on the ability of HFs to act as effective barriers against corrosion. The bilayer system cured at 60 °C showed the best electrochemical impedance results; however, the monolayer HF cured at 90 °C presented higher wear resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Zhu D, van Ooij WJ (2003) Corrosion protection of AA 2024-T3 by bis-[3-(triethoxysilyl)propyl]tetrasulfide in sodium chloride solution: Part 2: mechanism for corrosion protection. Corros Sci 45:2177–2197. doi:10.1016/S0010-938X(03)00061-1

    Article  CAS  Google Scholar 

  2. Seth A, van Ooij WJ, Puomi P et al (2007) Novel, one-step, chromate-free coatings containing anticorrosion pigments for metals—an overview and mechanistic study. Prog Org Coat 58:136–145. doi:10.1016/j.porgcoat.2006.08.030

    Article  CAS  Google Scholar 

  3. Vanin FM, Sobral PJA, Menegalli FC et al (2005) Effects of plasticizers and their concentrations on thermal and functional properties of gelatin-based films. Food Hydrocoll 19:899–907. doi:10.1016/j.foodhyd.2004.12.003

    Article  CAS  Google Scholar 

  4. Liu J, Zhan Z, Yu M, Li S (2013) Adsorption behavior of glycidoxypropyl-trimethoxy-silane on titanium alloy Ti–6.5Al–1Mo–1V–2Zr. Appl Surf Sci 264:507–515. doi:10.1016/j.apsusc.2012.10.054

    Article  CAS  Google Scholar 

  5. Rahimi H, Mozaffarinia R, Hojjati Najafabadi A (2013) Corrosion and wear resistance characterization of environmentally friendly sol–gel hybrid nanocomposite coating on AA5083. J Mater Sci Technol 29:603–608. doi:10.1016/j.jmst.2013.03.013

    Article  CAS  Google Scholar 

  6. Zheludkevich ML, Serra R, Montemor MF et al (2006) Corrosion protective properties of nanostructured sol–gel hybrid coatings to AA2024-T3. Surf Coat Technol 200:3084–3094. doi:10.1016/j.surfcoat.2004.09.007

    Article  CAS  Google Scholar 

  7. Metroke TL, Parkhill RL, Knobbe ET (2001) Passivation of metal alloys using sol–gel-derived materials—a review. Prog Org Coat 41:233–238. doi:10.1016/S0300-9440(01)00134-5

    Article  CAS  Google Scholar 

  8. Meth S, Savchenko N, Viva FA et al (2011) Siloxane-based thin films for corrosion protection of stainless steel in chloride media. J Appl Electrochem 41:885–890. doi:10.1007/s10800-011-0291-2

    Article  CAS  Google Scholar 

  9. Pantoja M, Díaz-Benito B, Velasco F et al (2009) Analysis of hydrolysis process of γ-methacryloxypropyltrimethoxysilane and its influence on the formation of silane coatings on 6063 aluminum alloy. Appl Surf Sci 255:6386–6390. doi:10.1016/j.apsusc.2009.02.022

    Article  CAS  Google Scholar 

  10. Wang D, Bierwagen GP (2009) Sol–gel coatings on metals for corrosion protection. Prog Org Coat 64:327–338. doi:10.1016/j.porgcoat.2008.08.010

    Article  CAS  Google Scholar 

  11. Costa E (1998) Preparação e caracterização de filmes finos sol–gel de Nb2O5–TiO2. Universidade de São Paulo, São Paulo

    Google Scholar 

  12. Yang L, Feng J, Zhang W, Qu J (2010) Film forming kinetics and reaction mechanism of γ-glycidoxypropyltrimethoxysilane on low carbon steel surfaces. Appl Surf Sci 256:6787–6794. doi:10.1016/j.apsusc.2010.04.090

    Article  CAS  Google Scholar 

  13. Certhoux E, Ansart F, Turq V et al (2013) New sol–gel formulations to increase the barrier effect of a protective coating against the corrosion of steels. Prog Org Coat 76:165–172. doi:10.1016/j.porgcoat.2012.09.002

    Article  CAS  Google Scholar 

  14. Li G, Wang X, Li A et al (2007) Fabrication and adhesive properties of thin organosilane films coated on low carbon steel substrates. Surf Coat Technol 201:9571–9578. doi:10.1016/j.surfcoat.2007.04.032

    Article  CAS  Google Scholar 

  15. Honkanen M, Hoikkanen M, Vippola M et al (2011) Characterization of silane layers on modified stainless steel surfaces and related stainless steel–plastic hybrids. Appl Surf Sci 257:9335–9346. doi:10.1016/j.apsusc.2011.05.058

    Article  CAS  Google Scholar 

  16. Petrie EM (2007) Primers and adhesion promoters. In: Handbook of adhesives and sealants. McGraw-Hill, New York, pp 277–305

  17. Malfatti CF, Menezes TL, Radtke C et al (2012) The influence of cerium ion concentrations on the characteristics of hybrid films obtained on AA2024-T3 aluminum alloy. Mater Corros 63:819–827. doi:10.1002/maco.201106070

    Article  CAS  Google Scholar 

  18. Kozhukharov S, Kozhukharov V, Schem M et al (2012) Protective ability of hybrid nano-composite coatings with cerium sulphate as inhibitor against corrosion of AA2024 aluminium alloy. Prog Org Coat 73:95–103. doi:10.1016/j.porgcoat.2011.09.005

    Article  CAS  Google Scholar 

  19. Hansal WEG, Hansal S, Pölzler M et al (2006) Investigation of polysiloxane coatings as corrosion inhibitors of zinc surfaces. Surf Coat Technol 200:3056–3063. doi:10.1016/j.surfcoat.2005.01.049

    Article  CAS  Google Scholar 

  20. Merlatti C, Perrin FX, Aragon E, Margaillan A (2008) Evaluation of physico-chemical changes in sub-layers of multi-layer anticorrosive marine paint systems: plasticizer and solvent release. Prog Org Coat 61:53–62. doi:10.1016/j.porgcoat.2007.09.001

    Article  CAS  Google Scholar 

  21. Yeh J-M, Weng C-J, Liao W-J, Mau Y-W (2006) Anticorrosively enhanced PMMA–SiO2 hybrid coatings prepared from the sol–gel approach with MSMA as the coupling agent. Surf Coat Technol 201:1788–1795. doi:10.1016/j.surfcoat.2006.03.011

    Article  CAS  Google Scholar 

  22. van Ooij WJ (1999) Improved service life of coated metals by engineering the polymer–metal interface. Service life prediction of organic coatings. American Chemical Society, pp 354–377

  23. Kim SK, Park IJ, Lee DY, Kim JG (2013) Influence of surface roughness on the electrochemical behavior of carbon steel. J Appl Electrochem 43:507–514. doi:10.1007/s10800-013-0534-5

    Article  CAS  Google Scholar 

  24. Bastos AC, Ferreira MGS, Simões AMP (2013) Effects of mechanical forming on the corrosion of electrogalvanised steel. Corros Sci 69:87–96. doi:10.1016/j.corsci.2012.11.026

    Article  CAS  Google Scholar 

  25. Orazem ME (2008) Electrochemical impedance spectroscopy. Wiley, Hoboken

    Book  Google Scholar 

  26. Eivaz Mohammadloo H, Sarabi AA (2012) The effect of solution temperature and pH on corrosion performance and morphology of nanoceramic-based conversion thin film. Mater Corros 64:535–543. doi:10.1002/maco.201106384

    Article  Google Scholar 

  27. Plieth W (2008) Electrochemistry for materials science, 1st edn. Elsevier, Amsterdam

    Google Scholar 

  28. Suegama PH, Sarmento VHV, Montemor MF et al (2010) Effect of cerium(IV) ions on the anticorrosion properties of siloxane–poly(methyl methacrylate) based film applied on tin coated steel. Electrochim Acta 55:5100–5109. doi:10.1016/j.electacta.2010.04.002

    Article  CAS  Google Scholar 

  29. Zandi Zand R, Verbeken K, Adriaens A (2013) Evaluation of the corrosion inhibition performance of silane coatings filled with cerium salt-activated nanoparticles on hot-dip galvanized steel substrates. Int J Electrochem Sci 8:4927–4940

    Google Scholar 

  30. Zandi Zand R, Verbeken K, Adriaens A (2013) Influence of the cerium concentration on the corrosion performance of Ce-doped silica hybrid coatings on hot dip galvanized steel substrates. Int J Electrochem Sci 8:548–563

    Google Scholar 

  31. Garcia-Heras M, Jimenez-Morales A, Casal B et al (2004) Preparation and electrochemical study of cerium–silica sol–gel thin films. J Alloy Compd 380:219–224. doi:10.1016/j.jallcom.2004.03.047

    Article  CAS  Google Scholar 

  32. Galio AF, Lamaka SV, Zheludkevich ML et al (2010) Inhibitor-doped sol–gel coatings for corrosion protection of magnesium alloy AZ31. Surf Coat Technol 204:1479–1486. doi:10.1016/j.surfcoat.2009.09.067

    Article  CAS  Google Scholar 

  33. Zandi Zand R, Verbeken K, Adriaens A (2012) Electrochemical assessment of the self-healing properties of cerium doped sol–gel coatings on 304L stainless steel substrates. Int J Electrochem Sci 7:9592–9608

    Google Scholar 

  34. Palomino LEM, Suegama PH, Aoki IV et al (2007) Investigation of the corrosion behaviour of a bilayer cerium–silane pre-treatment on Al 2024-T3 in 0.1 M NaCl. Electrochim Acta 52:7496–7505. doi:10.1016/j.electacta.2007.03.002

    Article  CAS  Google Scholar 

  35. Montemor MF, Pinto R, Ferreira MGS (2009) Chemical composition and corrosion protection of silane films modified with CeO2 nanoparticles. Electrochim Acta 54:5179–5189. doi:10.1016/j.electacta.2009.01.053

    Article  CAS  Google Scholar 

  36. Schem M, Schmidt T, Gerwann J et al (2009) CeO2-filled sol–gel coatings for corrosion protection of AA2024-T3 aluminium alloy. Corros Sci 51:2304–2315. doi:10.1016/j.corsci.2009.06.007

    Article  CAS  Google Scholar 

  37. Simões AM, Fernandes JCS (2010) Studying phosphate corrosion inhibition at the cut edge of coil coated galvanized steel using the SVET and EIS. Prog Org Coat 69:219–224. doi:10.1016/j.porgcoat.2010.04.022

    Article  Google Scholar 

  38. Ogle K, Morel S, Jacquet D (2006) Observation of self-healing functions on the cut edge of galvanized steel using SVET and pH microscopy. J Electrochem Soc 153:B1–B5. doi:10.1149/1.2126577

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank CAPES (the Brazilian Government Agency for the Development of Human Resources) and CNPq (the Brazilian National Council for Scientific and Technological Development) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. R. Kunst.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kunst, S.R., Cardoso, H.R.P., Ortega V, M.R. et al. The effects of curing temperature on bilayer and monolayer hybrid films: mechanical and electrochemical properties. J Appl Electrochem 44, 759–771 (2014). https://doi.org/10.1007/s10800-014-0697-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-014-0697-8

Keywords

Navigation