Skip to main content
Log in

Synthesis of nickel carbonate hydroxide@zeolitic imidazolate framework-67 (Ni2CO3(OH)2@ZIF-67) for pseudocapacitor applications

  • Short Communication
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Zeolitic imidazolate framework-67 (ZIF-67), nickel carbonate hydroxide (Ni2CO3(OH)2), and Ni2CO3(OH)2@ZIF-67 composite were synthesized by a typical hydrothermal method. During the synthesis of Ni2CO3(OH)2@ZIF-67, ZIF-67 acts as a host for the growth of Ni2CO3(OH)2. The structure and morphology were characterized by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The results confirmed that the porous morphology of Ni2CO3(OH)2@ZIF-67 was an urchin-like structure with fibers as basic structures. The porous structure combined with Ni2CO3(OH)2 maximized the utilization of active material, resulting in a high specific capacitance. The electrochemical performance of the sample was evaluated using cyclic voltammetry, chronopotentiometry, and electrochemical impedance spectroscopy. The electrochemical measurements showed that ZIF-67, Ni2CO3(OH)2 and Ni2CO3(OH)2@ZIF-67 electrodes delivered maximum capacitances of 65, 712 and 1,037 F g−1, respectively, at a scan rate of 5 mV s−1. About 80 % of the specific capacitance of Ni2CO3(OH)2@ZIF-67 was retained after 1,600 cycles at a scan rate of 10 mV s−1 in 6 M KOH electrolyte solutions. All the results indicated that the Ni2CO3(OH)2@ZIF-67 composite was a promising material for supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Burke A (2000) Ultracapacitors: why, how, and where is the technology. J Power Sources 91(1):37–50. doi:10.1016/S0378-7753(00)00485-7

    Article  CAS  Google Scholar 

  2. Huggins RA (2000) Supercapacitors and electrochemical pulse sources. Solid State Ion 134(1–2):179–195. doi:10.1016/S0167-2738(00)00725-6

    Article  CAS  Google Scholar 

  3. Aricò AS, Bruce P, Scrosati B, Tarascon J-M, Van Schalkwijk W (2005) Nanostructured materials for advanced energy conversion and storage devices. Nat Mater 4(5):366–377. doi:10.1038/nmat1368

    Article  Google Scholar 

  4. Conway BE (1991) Transition from “supercapacitor” to “battery” behavior in electrochemical energy storage. J Electrochem Soc 138(6):1539–1548. doi:10.1149/1.2085829

    Article  CAS  Google Scholar 

  5. Kong L-B, Deng L, Li X-M, Liu M-C, Luo Y-C, Kang L (2012) Fabrication of flower-like Ni3(NO3)2(OH)4 and their electrochemical properties evaluation. Mater Res Bull 47(7):1641–1647. doi:10.1016/j.materresbull.2012.03.051

    Article  CAS  Google Scholar 

  6. Zhu Y, Cao C, Tao S, Chu W, Wu Z, Li Y (2014) Ultrathin nickel hydroxide and oxide nanosheets: synthesis, characterizations and excellent supercapacitor performances. Sci Rep, 4. doi:10.1038/srep05787. http://www.nature.com/srep/2014/140829/srep05787/abs/srep05787.html#supplementary-information

  7. Fu Y, Song J, Zhu Y, Cao C (2014) High-performance supercapacitor electrode based on amorphous mesoporous Ni(OH)2 nanoboxes. J Power Sources 262:344–348. doi:10.1016/j.jpowsour.2014.04.002

    Article  CAS  Google Scholar 

  8. Gu L, Wang Y, Lu R, Wang W, Peng X, Sha J (2015) Silicon carbide nanowires@Ni(OH)2 core–shell structures on carbon fabric for supercapacitor electrodes with excellent rate capability. J Power Sources 273:479–485. doi:10.1016/j.jpowsour.2014.09.113

    Article  CAS  Google Scholar 

  9. Salunkhe RR, Lin J, Malgras V, Dou SX, Kim JH, Yamauchi Y (2015) Large-scale synthesis of coaxial carbon nanotube/Ni(OH)2 composites for asymmetric supercapacitor application. Nano Energy 11:211–218. doi:10.1016/j.nanoen.2014.09.030

    Article  CAS  Google Scholar 

  10. Gu Y, Lu Z, Chang Z, Liu J, Lei X, Li Y, Sun X (2013) NiTi layered double hydroxide thin films for advanced pseudocapacitor electrodes. J Mater Chem A 1(36):10655–10661. doi:10.1039/C3TA10954B

    Article  CAS  Google Scholar 

  11. Zhang G, Yu L, Hoster HE, Lou XW (2013) Synthesis of one-dimensional hierarchical NiO hollow nanostructures with enhanced supercapacitive performance. Nanoscale 5(3):877–881. doi:10.1039/C2NR33326K

    Article  CAS  Google Scholar 

  12. Zhu J, Jiang J, Feng Y, Meng G, Ding H, Huang X (2013) Three-dimensional Ni/SnOx/C hybrid nanostructured arrays for lithium-ion microbattery anodes with enhanced areal capacity. ACS Appl Mater Interfaces 5(7):2634–2640. doi:10.1021/am400055a

    Article  CAS  Google Scholar 

  13. Zhu J, Jiang J, Liu J, Ding R, Ding H, Feng Y, Wei G, Huang X (2011) Direct synthesis of porous NiO nanowall arrays on conductive substrates for supercapacitor application. J Solid State Chem 184(3):578–583. doi:10.1016/j.jssc.2011.01.019

    Article  CAS  Google Scholar 

  14. Fu Y, Sun D, Chen Y, Huang R, Ding Z, Fu X, Li Z (2012) An amine-functionalized titanium metal–organic framework photocatalyst with visible-light-induced activity for CO2 reduction. Angew Chem Int Ed 51(14):3364–3367. doi:10.1002/anie.201108357

    Article  CAS  Google Scholar 

  15. Jahan M, Bao Q, Loh KP (2012) Electrocatalytically active graphene-porphyrin MOF Composite for oxygen reduction reaction. J Am Chem Soc 134(15):6707–6713. doi:10.1021/ja211433h

    Article  CAS  Google Scholar 

  16. Bux H, Liang F, Li Y, Cravillon J, Wiebcke M, Caro J (2009) Zeolitic imidazolate framework membrane with molecular sieving properties by microwave-assisted solvothermal synthesis. J Am Chem Soc 131(44):16000–16001. doi:10.1021/ja907359t

    Article  CAS  Google Scholar 

  17. Lee DY, Yoon SJ, Shrestha NK, Lee S-H, Ahn H, Han S-H (2012) Unusual energy storage and charge retention in Co-based metal–organic-frameworks. Microporous Mesoporous Mater 153:163–165. doi:10.1016/j.micromeso.2011.12.040

    Article  CAS  Google Scholar 

  18. Lee DY, Shinde DV, Kim E-K, Lee W, Oh I-W, Shrestha NK, Lee JK, Han S-H (2013) Supercapacitive property of metal–organic-frameworks with different pore dimensions and morphology. Microporous Mesoporous Mater 171:53–57. doi:10.1016/j.micromeso.2012.12.039

    Article  CAS  Google Scholar 

  19. Díaz R, Orcajo MG, Botas JA, Calleja G, Palma J (2012) Co8-MOF-5 as electrode for supercapacitors. Mater Lett 68:126–128. doi:10.1016/j.matlet.2011.10.046

    Article  Google Scholar 

  20. Gao Y, Wu J, Zhang W, Tan Y, Zhao J, Tang B (2014) The electrochemical performance of SnO2 quantum dots@zeolitic imidazolate frameworks-8 (ZIF-8) composite material for supercapacitors. Mater Lett 128:208–211. doi:10.1016/j.matlet.2014.04.175

    Article  CAS  Google Scholar 

  21. Banerjee R, Phan A, Wang B, Knobler C, Furukawa H, O’Keeffe M, Yaghi OM (2008) High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science 319(5865):939–943. doi:10.1126/science.1152516

    Article  CAS  Google Scholar 

  22. Qian J, Sun F, Qin L (2012) Hydrothermal synthesis of zeolitic imidazolate framework-67 (ZIF-67) nanocrystals. Mater Lett 82:220–223. doi:10.1016/j.matlet.2012.05.077

    Article  CAS  Google Scholar 

  23. Gross AF, Sherman E, Vajo JJ (2012) Aqueous room temperature synthesis of cobalt and zinc sodalite zeolitic imidizolate frameworks. Dalton Trans 41(18):5458–5460. doi:10.1039/C2DT30174A

    Article  CAS  Google Scholar 

  24. Horike S, Umeyama D, Kitagawa S (2013) Ion conductivity and transport by porous coordination polymers and metal–organic frameworks. Acc Chem Res 46(11):2376–2384. doi:10.1021/ar300291s

    Article  CAS  Google Scholar 

  25. Patil UM, Gurav KV, Fulari VJ, Lokhande CD, Joo OS (2009) Characterization of honeycomb-like “β-Ni(OH)2” thin films synthesized by chemical bath deposition method and their supercapacitor application. J Power Sources 188(1):338–342. doi:10.1016/j.jpowsour.2008.11.136

    Article  CAS  Google Scholar 

  26. Liu J, Cheng C, Zhou W, Li H, Fan HJ (2011) Ultrathin nickel hydroxidenitrate nanoflakes branched on nanowire arrays for high-rate pseudocapacitive energy storage. Chem Commun 47(12):3436–3438. doi:10.1039/C0CC04906A

    Article  CAS  Google Scholar 

  27. Barakat NAM, El-Deen AG, Shin G, Park M, Kim HY (2013) Novel Cd-doped Co/C nanoparticles for electrochemical supercapacitors. Mater Lett 99:168–171. doi:10.1016/j.matlet.2013.03.034

    Article  CAS  Google Scholar 

  28. Xu M-W, Bao S-J, Li H-L (2007) Synthesis and characterization of mesoporous nickel oxide for electrochemical capacitor. J Solid State Electrochem 11(3):372–377. doi:10.1007/s10008-006-0155-6

    Article  CAS  Google Scholar 

  29. Hu B, Qin X, Asiri AM, Alamry KA, Al-Youbi AO, Sun X (2013) Fabrication of Ni(OH)2 nanoflakes array on Ni foam as a binder-free electrode material for high performance supercapacitors. Electrochim Acta 107:339–342. doi:10.1016/j.electacta.2013.06.003

    Article  CAS  Google Scholar 

  30. Gamby J, Taberna PL, Simon P, Fauvarque JF, Chesneau M (2001) Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors. J Power Sources 101(1):109–116. doi:10.1016/S0378-7753(01)00707-8

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Fund of Graduate Innovation Project, College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science (A-0903-13-01078, E1-0903-14-01106).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bohejin Tang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Y., Wu, J., Zhang, W. et al. Synthesis of nickel carbonate hydroxide@zeolitic imidazolate framework-67 (Ni2CO3(OH)2@ZIF-67) for pseudocapacitor applications. J Appl Electrochem 45, 541–547 (2015). https://doi.org/10.1007/s10800-015-0795-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-015-0795-2

Keywords

Navigation