Skip to main content
Log in

Effects of austenitizing temperature on the microstructure and electrochemical behavior of a martensitic stainless steel

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The aim of this work is to study the effects of austenitizing temperatures on the microstructure and electrochemical properties of a typical type of martensitic stainless steel (MSS) in 3.5 wt% NaCl aqueous solution. The microstructures of the experimental MSSs in different heat treatment states, such as annealed and quenched after different austenitizing temperatures, were characterized using SEM–EDS and XRD analysis. Electrochemical techniques, including potentiodynamic polarization and electrochemical impedance spectroscopy were also used to analyze the electrochemical behavior of the studied material in 3.5 wt% NaCl aqueous solution. The results show that the Cr-rich M23C6 carbides were precipitated during annealing, and then dissolved into the steel matrix during austenitization. An increase in the austenitizing temperature can reduce the amount of Cr-rich M23C6 carbides in the quenched steels, improving the homogeneity of Cr distribution. The pitting potential of the quenched samples increased with the austenitizing temperature, and the passive films that formed on the samples austenitized at higher temperatures were more protective against chloride corrosion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Shreir LL, Jarman RA, Burstein GT (1994) Corrosion control (Volume 2). Corrosion, vol 2. Butterworth-Heinemann, Oxford

    Google Scholar 

  2. Frankel G (1998) Pitting corrosion of metals a review of the critical factors. J Electrochem Soc 145(6):2186–2198

    Article  CAS  Google Scholar 

  3. Ahmad S, Malik AU (2001) Corrosion behaviour of some stainless steels in chlorinated Gulf seawater. J Appl Electrochem 31(9):1009–1016

    Article  CAS  Google Scholar 

  4. Sato N (1971) A theory for breakdown of anodic oxide films on metals. Electrochim Acta 16(10):1683–1692

    Article  CAS  Google Scholar 

  5. Wang J, Su C, Szklarska-Smialowska Z (1988) Effects of Cl concentration and temperature on pitting of AISI 304 stainless steel. Corrosion 44(10):732–737

    Article  CAS  Google Scholar 

  6. Nagarajan S, Karthega M, Rajendran N (2007) Pitting corrosion studies of super austenitic stainless steels in natural sea water using dynamic electrochemical impedance spectroscopy. J Appl Electrochem 37(2):195–201

    Article  CAS  Google Scholar 

  7. Hill H, Raab U, Weber S, Theisen W, Wollmann M, Wagner L (2011) Influence of heat treatment on the performance characteristics of a plastic mold steel. Steel Res Int 82(11):1290–1296

    Article  CAS  Google Scholar 

  8. Schneider R, Mesquita R (2011) IFHTSE Global 21: heat treatment and surface engineering in twenty-first century Part 16: advances in tool steels and their heat treatment Part 2-Hot work tool steels and plastic mould steels. Int Heat Treat Surf Eng 5(3):94–100

    Article  Google Scholar 

  9. Williams DE, Newman RC, Song Q, Kelly RG (1991) Passivity breakdown and pitting corrosion of binary alloys. Nature 350:216–219

    Article  CAS  Google Scholar 

  10. Pistorius PC, Burstein GT (1994) Aspects of the effects of electrolyte composition on the occurrence of metastable pitting on stainless steel. Corros Sci 36(3):525–538

    Article  CAS  Google Scholar 

  11. Nakamichi H, Sato K, Miyata Y, Kimura M, Masamura K (2008) Quantitative analysis of Cr-depleted zone morphology in low carbon martensitic stainless steel using FE-(S) TEM. Corros Sci 50(2):309–315

    Article  CAS  Google Scholar 

  12. Kaneko K, Fukunaga T, Yamada K, Nakada N, Kikuchi M, Saghi Z, Barnard JS, Midgley PA (2011) Formation of M23C6-type precipitates and chromium-depleted zones in austenite stainless steel. Scr Mater 65(6):509–512

    Article  CAS  Google Scholar 

  13. Choi Y-S, Kim J-G, Park Y-S, Park J-Y (2007) Austenitizing treatment influence on the electrochemical corrosion behavior of 0.3 C-14Cr-3Mo martensitic stainless steel. Mater Lett 61(1):244–247

    Article  CAS  Google Scholar 

  14. Marcelin S, Pébère N, Régnier S (2013) Electrochemical characterisation of a martensitic stainless steel in a neutral chloride solution. Electrochim Acta 87:32–40

    Article  CAS  Google Scholar 

  15. Sun GF, Bhattacharya S, Dinda GP, Dasgupta A, Mazumder J (2011) Influence of processing parameters on lattice parameters in laser deposited tool alloy steel. Mater Sci Eng A 528(15):5141–5145

    Article  CAS  Google Scholar 

  16. Rammo NN, Abdulah OG (2006) A model for the prediction of lattice parameters of iron–carbon austenite and martensite. J Alloy Compd 420(1–2):117–120

    Article  CAS  Google Scholar 

  17. Zhang M-X, Kelly P, Bekessy L, Gates J (2000) Determination of retained austenite using an X-ray texture goniometer. Mater Charact 45(1):39–49

    Article  CAS  Google Scholar 

  18. Luzginova N, Zhao L, Sietsma J (2007) Evolution and thermal stability of retained austenite in SAE 52100 bainitic steel. Mater Sci Eng A 448(1):104–110

    Article  Google Scholar 

  19. Erdos E (1983) Analysis of high temperature materials, vol 204. Applied Science Publishers, London

    Google Scholar 

  20. Franck FJ, Tambuyser P, Zubani I (1982) X-ray powder diffraction evidence for the incorporation of W and Mo into M23C6 extracted from high-temperature alloys. J Mater Sci 17(10):3057–3065

    Article  CAS  Google Scholar 

  21. Isfahany AN, Saghafian H, Borhani G (2011) The effect of heat treatment on mechanical properties and corrosion behavior of AISI420 martensitic stainless steel. J Alloy Compd 509(9):3931–3936

    Article  CAS  Google Scholar 

  22. Candelária AF, Pinedo CE (2003) Influence of the heat treatment on the corrosion resistance of the martensitic stainless steel type AISI 420. J Mater Sci Lett 22(16):1151–1153

    Article  Google Scholar 

  23. Hippenstiel F, Lubich V, Vetter P, Grimm W (2004) Handbook of Plastics Mould Steels. Edelstahlwerke Buderus AG, Wetzlar

    Google Scholar 

  24. Shtansky D, Inden G (1997) Phase transformation in Fe-Mo-C and Fe-WC steels: II. Eutectoid reaction of M23C6 carbide decomposition during austenitization. Acta Mater 45(7):2879–2895

    Article  CAS  Google Scholar 

  25. Hong H, Rho B, Nam S (2001) Correlation of the M23C6 precipitation morphology with grain boundary characteristics in austenitic stainless steel. Mater Sci Eng A 318(1):285–292

    Article  Google Scholar 

  26. Tang B, Jiang L, Hu R, Li Q (2013) Correlation between grain boundary misorientation and M23C6 precipitation behaviors in a wrought Ni-based superalloy. Mater Charact 78:144–150

    Article  CAS  Google Scholar 

  27. Dong ZH, Shi W, Guo XP (2011) Initiation and repassivation of pitting corrosion of carbon steel in carbonated concrete pore solution. Corros Sci 53(4):1322–1330

    Article  CAS  Google Scholar 

  28. Lorang G, Belo MDC, Simoes AMP, Ferreira MGS (1994) Chemical composition of passive films on AISI 304 stainless steel. J Electrochem Soc 141(12):3347–3356

    Article  CAS  Google Scholar 

  29. Marcelin S, Pébère N, Régnier S (2013) Electrochemical characterisation of a martensitic stainless steel in a neutral chloride solution. Electrochim Acta 87:32–40

    Article  CAS  Google Scholar 

  30. He H, Zhang T, Zhao C, Hou K, Meng G, Shao Y, Wang F (2009) Effect of alternating voltage passivation on the corrosion resistance of duplex stainless steel. J Appl Electrochem 39(5):737–745

    Article  CAS  Google Scholar 

  31. El-Egamy S, Badaway W (2004) Passivity and passivity breakdown of 304 stainless steel in alkaline sodium sulphate solutions. J Appl Electrochem 34(11):1153–1158

    Article  CAS  Google Scholar 

  32. Hirschorn B, Orazem ME, Tribollet B, Vivier V, Frateur I, Musiani M (2010) Determination of effective capacitance and film thickness from constant-phase-element parameters. Electrochim Acta 55(21):6218–6227

    Article  CAS  Google Scholar 

  33. Dong ZH, Zhu T, Shi W, Guo XP (2011) Inhibition of ethyleneamine on the pitting corrosion of rebar in a synthetic carbonated concrete pore solution. Acta Phys Chim Sin 27:905–912

    CAS  Google Scholar 

  34. Candelaria A, Pinedo C (2003) Influence of the heat treatment on the corrosion resistance of the martensitic stainless steel type AISI 420. J Mater Sci Lett 22(16):1151–1153

    Article  CAS  Google Scholar 

  35. Hill H, Huth S, Weber S, Theisen W (2011) Corrosion properties of a plastic mould steel with special focus on the processing route. Mater Corros 62(5):436–443

    Article  CAS  Google Scholar 

  36. Zhang L, Zhang W, Jiang Y, Deng B, Sun D, Li J (2009) Influence of annealing treatment on the corrosion resistance of lean duplex stainless steel 2101. Electrochim Acta 54(23):5387–5392

    Article  CAS  Google Scholar 

  37. Guo LQ, Lin MC, Qiao LJ, Volinsky AA (2013) Ferrite and austenite phase identification in duplex stainless steel using SPM techniques. Appl Surf Sci 287:499–501

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Basic Science Research program of China (Grant No. 2012CB025906).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ke-Fu Yao or Yun-Bo Chen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1382 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, SY., Yao, KF., Chen, YB. et al. Effects of austenitizing temperature on the microstructure and electrochemical behavior of a martensitic stainless steel. J Appl Electrochem 45, 375–383 (2015). https://doi.org/10.1007/s10800-015-0796-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-015-0796-1

Keywords

Navigation