Skip to main content
Log in

Recycling of graphite anodes for the next generation of lithium ion batteries

  • Review Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Graphite is currently the state-of-the-art anode material for most of the commercial lithium ion batteries. Among different types of natural graphite, flake graphite has been recently recognized as one of the critical materials due to the predicted future market growth of lithium ion batteries for vehicular applications. Current status and future demand of flake graphite in the market are discussed. It was found that flake graphite could become a critical material in the near future for countries such as the United States and members of the European Union with no graphite production. Recycling of flake graphite from its different waste resources is proposed as a potential solution to meet the future demand of graphite. The current status of graphite anodes in the present recycling technologies of spent lithium ion batteries was reviewed. The limitation of current technologies and a new perspective towards the future concept of “battery recycling” were also pointed out. Challenges in recycling battery grade flake graphite from spent lithium ion batteries and possible research opportunities in this regard were introduced.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. De las Casas C, Li W (2012) A review of application of carbon nanotubes for lithium ion battery anode material. J Power Sour 208:74–85. doi:10.1016/j.jpowsour.2012.02.013

    Article  CAS  Google Scholar 

  2. Fu LJ, Liu H, Li C, Wu YP, Rahm E, Holze R, Wu HQ (2006) Surface modifications of electrode materials for lithium ion batteries. Solid State Sci 8(2):113–128. doi:10.1016/j.solidstatesciences.2005.10.019

    Article  CAS  Google Scholar 

  3. Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D (2011) Challenges in the development of advanced Li-ion batteries: a review. Energy Environ Sci 4(9):3243–3262. doi:10.1039/c1ee01598b

    Article  CAS  Google Scholar 

  4. Goonan TG (2012) Lithium use in batteries. U.S. Geological Survey, Reston

    Google Scholar 

  5. Kassatly SSN (2010) The lithium-ion battery industry for electric vehicles. Thesis, Massachusetts Institute of Technology, Boston

  6. Dunn JB, Gaines L, Barnes M, Sullivan J and Wang M (2012) Material and energy flows in the materials production, assemble, and end-of-life stages of the automotive lithium-ion battery life cycle, Report ANL/ESD/12-3. Argonne National Labratory (ANL) Argonne, IL

  7. Gaines L and Nelson P (2010) Lithium-ion batteries: possible materials issues. In: 13th international battery materials recycling seminar and exhibit, Broward County Convention Center, Fort Lauderdale, Florida, March 16–18, 2009, p 16

  8. Scrosati B, Garche J (2010) Lithium batteries: status, prospects and future. J Power Sour 195(9):2419–2430. doi:10.1016/j.jpowsour.2009.11.048

    Article  CAS  Google Scholar 

  9. Bernardes A, Espinosa DCR, Tenorio JS (2004) Recycling of batteries: a review of current processes and technologies. J Power Sour 130(1):291–298. doi:10.1016/j.jpowsour.2003.12.026

    Article  CAS  Google Scholar 

  10. Wu Q, Lu W, Prakash J (2000) Characterization of a commercial size cylindrical Li-ion cell with a reference electrode. J Power Sour 88(2):237–242. doi:10.1016/S0378-7753(00)00372-4

    Article  CAS  Google Scholar 

  11. Iwakura C, Fukumoto Y, Inoue H, Ohashi S, Kobayashi S, Tada H, Abe M (1997) Electrochemical characterization of various metal foils as a current collector of positive electrode for rechargeable lithium batteries. J Power Sour 68(2):301–303. doi:10.1016/S0378-7753(97)02538-X

    Article  CAS  Google Scholar 

  12. Chen J, Yao C, Sheu S, Chiou Y, Shih H (1997) The study of carbon half-cell voltage in lithium-ion secondary batteries. J Power Sour 68(2):242–244. doi:10.1016/S0378-7753(97)02650-5

    Article  CAS  Google Scholar 

  13. Shin SM, Kim NH, Sohn JS, Yang DH, Kim YH (2005) Development of a metal recovery process from Li-ion battery wastes. Hydrometallurgy 79(3):172–181. doi:10.1016/j.hydromet.2005.06.004

    Article  CAS  Google Scholar 

  14. Georgi-Maschler T, Friedrich B, Weyhe R, Heegn H, Rutz M (2012) Development of a recycling process for Li-ion batteries. J Power Sour 207:173–182. doi:10.1016/j.jpowsour.2012.01.152

    Article  CAS  Google Scholar 

  15. Vayrynen A, Salminen J (2012) Lithium ion battery production. J Chem Thermodyn 46:80–85. doi:10.1016/j.jct.2011.09.005

    Article  CAS  Google Scholar 

  16. Bade R, Pidgeon N, Greene M (2012) Graphite, review sector, libertas. http://minesite.com/media/pub/var/release_downloadable_file/38247.pdf. Accessed April 2014

  17. Cobb J June 2014 dashboard. http://www.hybridcars.com/june-2014-dashboard/. Accessed July 2014

  18. Oslon DW (2014) Graphite (Natural). United States Geological Survey, Mineral commodity summaries

  19. Syrah Resources, Graphite Industry Report. (2012). http://www.investment-hr.com/next_opper_doc/Graphite.industry.Report.pdf. Accessed May 2014

  20. Tesla battery plant will need 6 new flake graphite mines (2014) Industrial minerals. http://www.indmin.com/Article/3315690/Tesla-battery-plant-will-need-6-new-flake-graphite-mines.html. Accessed April 2014

  21. Graphite Industry and Balama Marketing Update (2013) Syrah Resources Ltd. http://hotcopper.com.au/threads/ann-graphite-industry-and-balama-marketing-updat.2008347/-.U_4_K2NiJQo. Accessed April 2014

  22. Concern over battery grade graphite supplies. (2010) Industrial mineral. http://www.northerngraphite.com/wp-content/uploads/2010/08/Concern-over-battery-grade-graphite-supplies.pdf. Accessed June 2014

  23. Guo P, Song H, Chen X (2009) Electrochemical performance of graphene nanosheets as anode material for lithium-ion batteries. Electrochem Commun 11(6):1320–1324. doi:10.1016/j.elecom.2009.04.036

    Article  CAS  Google Scholar 

  24. Weis PL (1973) Unites States Mineral Resources. Geological Survey Professional Paper, vol 820

  25. Mitchell C (1992) Industrial Minerals Laboratory Manual: Flake graphite, Technical Report WG/92/30 British Geological Survey

  26. Wissler M (2006) Graphite and carbon powders for electrochemical applications. J Power Sour 156(2):142–150. doi:10.1016/j.jpowsour.2006.02.064

    Article  CAS  Google Scholar 

  27. Dissanayake CB (1981) The origin of graphite of Sri Lanka. Org Geochem 3(1–2):1–7. doi:10.1016/0146-6380(81)90006-1

    Article  CAS  Google Scholar 

  28. Taylor HA (2000) Graphite, natural. In: Kirk-othmer encyclopedia of chemical technology. Wiley, New York. doi:10.1002/0471238961.1401202120012512.a01

  29. Mukhopadhyay P, Gupta RK (2012) Graphite, graphene, and their polymer nanocomposites. CRC Press, Boca Raton

    Book  Google Scholar 

  30. Ohzeki K, Saito Y, Golman B, Shinohara K (2005) Shape modification of graphite particles by rotational impact blending. Carbon 43(8):1673–1679. doi:10.1016/j.carbon.2005.02.007

    Article  CAS  Google Scholar 

  31. Zaghib K, Song X, Guerfi A, Rioux R, Kinoshita K (2003) Purification process of natural graphite as anode for Li-ion batteries: chemical versus thermal. J Power Sour 119–121:8–15. doi:10.1016/S0378-7753(03)00116-2

    Article  CAS  Google Scholar 

  32. Markel RF, Goldberger W (1979) Method for heat treating carbonaceous material in a fluidized bed. United States Patent US4160813 A, July 10, 1979

  33. Takahashi M, Ohshita R, Ueno K, Nishio K, Saitoh T (1994) Lithium secondary batteries. European Patent EP0624913 A2, March 30, 1993

  34. Yoshio M, Wang H, Fukuda K (2003) Spherical carbon-coated natural graphite as a lithium-ion battery-anode material. Angew Chem 115(35):4335–4338. doi:10.1002/ange.200351203

    Article  Google Scholar 

  35. Yoshio M, Wang H, Fukuda K, Umeno T, Abe T, Ogumi Z (2004) Improvement of natural graphite as a lithium-ion battery anode material, from raw flake to carbon-coated sphere. J Mater Chem 14(11):1754–1758. doi:10.1039/B316702J

    Article  CAS  Google Scholar 

  36. Wang X, Gai G-S, Yang Y-F, Shen W-C (2008) Preparation of natural microcrystalline graphite with high sphericity and narrow size distribution. Powder Technol 181(1):51–56. doi:10.1016/j.powtec.2007.06.025

    Article  CAS  Google Scholar 

  37. Chen G, Fang Q, Jang BZ, Shi J, Wang MC, Zhamu A (2010) Graphite or carbon particulates for the lithium ion battery anode. United States Patent US20120021294 A1, Jan 26, 2012

  38. Juri G, Wilhelm HA, L’Heureux J High Purity Graphite Powders for High Performance,. Timcal Graphite and Carbon. http://www.timcal.ch/Scopi/Group/Timcal/timcal.nsf/pagesref/MCOA-7S6H6L/$File/High_purity_graphite_powders_for_high_performance.pdf. Accessed Feb 2014

  39. Feytis A (2010) The bright side of graphite. http://www.northerngraphite.com/wp-content/uploads/2010/08/Graphite-feature-july-2010.pdf. Accessed May 2014

  40. Li J, Daniel C, Wood D (2011) Materials processing for lithium-ion batteries. J Power Sour 196(5):2452–2460. doi:10.1016/j.jpowsour.2010.11.001

    Article  CAS  Google Scholar 

  41. Markevich E, Baranchugov V, Salitra G, Aurbach D, Schmidt MA (2008) Behavior of graphite electrodes in solutions based on ionic liquids in in situ Raman studies. J Electrochem Soc 155(2):A132–A137. doi:10.1149/1.2811897

    Article  CAS  Google Scholar 

  42. Baranchugov V, Markevich E, Salitra G, Aurbach D, Semrau G, Schmidt MA (2008) In situ Raman spectroscopy study of different kinds of graphite electrodes in ionic liquid electrolytes. J Electrochem Soc 155(3):A217–A227. doi:10.1149/1.2828858

    Article  CAS  Google Scholar 

  43. Aurbach D, Teller H, Koltypin M, Levi E (2003) On the behavior of different types of graphite anodes. J Power Sour 119–121:2–7. doi:10.1016/S0378-7753(03)00115-0

    Article  CAS  Google Scholar 

  44. Lu M, Cheng H, Yang Y (2008) A comparison of solid electrolyte interphase (SEI) on the artificial graphite anode of the aged and cycled commercial lithium ion cells. Electrochim Acta 53(9):3539–3546. doi:10.1016/j.electacta.2007.09.062

    Article  CAS  Google Scholar 

  45. Report on Critical Raw Materials for the EU. Europian Commission. http://ec.europa.eu/enterprise/policies/raw-materials/documents/index_en.htm. Accessed June 2014

  46. Amaraweera T, Balasooriya N, Wijayasinghe H, Attanayake A, Dissanayake M (2013) Purity enhancement of Sri Lankan vein graphite for lithium-ion rechargeable battery anode. In: 29th Technical Sessions of Geological Society of Sri Lanka, p 104

  47. Vieira F, Cisneros I, Sansiviero M, Miranda A, Rosa N, Lima U, Mohallem N (2006) Preparation processes and properties of expanded graphite for alkaline batteries. J Phys Chem Solids 67(5):1208–1212. doi:10.1016/j.jpcs.2006.01.050

    Article  CAS  Google Scholar 

  48. Park D-Y, Lim Y-S, Kim M-S (2010) Performance of expanded graphite as anode materials for high power li-ion secondary batteries. Carbon Lett 11:343–346

    Article  Google Scholar 

  49. Bai L-Z, Zhao D-L, Zhang T-M, Xie W-G, Zhang J-M, Shen Z-M (2013) A comparative study of electrochemical performance of graphene sheets, expanded graphite and natural graphite as anode materials for lithium-ion batteries. Electrochim Acta 107:555–561. doi:10.1016/j.electacta.2013.06.032

    Article  CAS  Google Scholar 

  50. Lin Y, Huang Z-H, Yu X, Shen W, Zheng Y, Kang F (2014) Mildly expanded graphite for anode materials of lithium ion battery synthesized with perchloric acid. Electrochim Acta 116:170–174. doi:10.1016/j.electacta.2013.11.057

    Article  CAS  Google Scholar 

  51. Shaw S (2013) Increasing demand for high purity natural graphite in new applications Roskill. http://www.roskill.com/news/increasing-demand-for-high-purity-natural-graphite-in-new-applications. Accessed May 2014

  52. Risk List of 2012. (2012). http://www.bgs.ac.uk/mineralsuk/statistics/risklist.html. Accessed June 2014

  53. Sikes K, Gross T, Lin Z, Sullivan J, Cleary T, Ward J (2010) Plug-in hybrid electric vehicle market introduction study: final report. http://www.osti.gov/scitech//servlets/purl/972306/. Accessed July 2014

  54. Laverty PD, Nicks LJ and Walters LA (1994) Recovery of Flake Graphite From Steelmaking Kish, US Department of Interior, Bureau of Mines

  55. Ubbelohde AR, Lewis FA (1960) Graphite and its crystal compounds. Clarendon Press, Oxford, London

    Google Scholar 

  56. Walker P, Imperial G (1957) Structure of graphites: graphitic character of kish. Nature 180:1185. doi:10.1038/1801185a0

    Article  Google Scholar 

  57. Matuyama E (1959) Structure of kish and other graphites. Nature 183:670–671. doi:10.1038/183670b0

    Article  Google Scholar 

  58. Liu S, Loper CR Jr (1991) The formation of kish graphite. Carbon 29(4):547–555. doi:10.1016/0008-6223(91)90119-4

    Article  CAS  Google Scholar 

  59. Bennett GW, Leduc M, St-Hilaire JG, Garceau C (1997) Beneficiation of kish graphite. Unites States Patent US5672327 A, September 30

  60. Nicks LJ, Nehl FH, Chambers MF (1995) Recovering flake graphite from steelmaking kish. J Mineral, Metals Mater Soc 47(6):48–51. doi:10.1007/bf03221205

    Article  CAS  Google Scholar 

  61. Dunn J, Gaines L, Barnes M, Sullivan J Impacts of the Manufacturing and Recycling Stages on Battery Life Cycles. Argonne National Laboratory, Energy Systems Division, Department of Mechanical Engineering. http://www.transportation.anl.gov/pdfs/B/836.PDF. Accessed Jan 2014

  62. Zackrisson M, Avellán L, Orlenius J (2011) Life cycle assessment of lithium-ion batteries for plug-in hybrid electric vehicles-critical issues. J Clean Prod 18(15):1519–1529. doi:10.1016/j.jclepro.2010.06.004

    Article  CAS  Google Scholar 

  63. Xu J, Thomas H, Francis RW, Lum KR, Wang J, Liang B (2008) A review of processes and technologies for the recycling of lithium-ion secondary batteries. J Power Sour 177(2):512–527. doi:10.1016/j.jpowsour.2007.11.074

    Article  CAS  Google Scholar 

  64. Granata G, Pagnanelli F, Moscardini E, Takacova Z, Havlik T, Toro L (2012) Simultaneous recycling of nickel metal hydride, lithium ion and primary lithium batteries: accomplishment of European guidelines by optimizing mechanical pre-treatment and solvent extraction operations. J Power Sour 212:205–211. doi:10.1016/j.jpowsour.2012.04.016

    Article  CAS  Google Scholar 

  65. Sullivan J, Gaines L (2010) A review of battery life-cycle analysis: state of knowledge and critical needs, No. ANL/ESD/10-7. Argonne National Laboratory (ANL). http://www.osti.gov/scitech/biblio/1000659. Accessed May 2014

  66. Gaines L, Sullivan J, Burnham A, Belharouak I Life-cycle analysis for lithium-ion battery production and recycling. In: Transportation Research Board 90th Annual Meeting Washington, DC, January 23–27, 2011

  67. Sullivan J, Gaines L, Burnham A Role of recycling in the life cycle of batteries. In: TMS 2011 140th annual meeting and exhibition, materials processing and energy materials, 2011. Wiley, New York, p 25

  68. Wang L, Schnepp Z, Titirici MM (2013) Rice husk-derived carbon anodes for lithium ion batteries. J Mater Chem A 1:5269. doi:10.1039/c3ta10650k

    Article  CAS  Google Scholar 

  69. Li Z, Xu Z, Tan X, Wang H, Holt CMB, Stephenson T, Olsenab BC, Mitlin D (2013) Mesoporous nitrogen-rich carbons derived from protein for ultra-high capacity battery anodes and supercapacitors. Energy Environ Sci 6:871–878. doi:10.1039/c2ee23599d

    Article  CAS  Google Scholar 

  70. Memarzadeh Lotfabad E, Ding J, Cui K, Kohandehghan A, Kalisvaart WP, Hazelton M, Mitlin D (2014) High-density sodium and lithium ion battery anodes from banana peels. ACS Nano 8(7):7115–7129. doi:10.1021/nn502045y

    Article  CAS  Google Scholar 

  71. Naskar AK, Bi Z, Li Y, Akato SK, Saha D, Chi M, Bridges CA, Paranthaman MP (2014) Tailored recovery of carbons from waste tires for enhanced performance as anodes in lithium-ion batteries. RCS Adv 4:38213. doi:10.1039/c4ra03888f

    CAS  Google Scholar 

  72. Castillo S, Ansart F, Laberty-Robert C, Portal J (2002) Advances in the recovering of spent lithium battery compounds. J Power Sour 112(1):247–254. doi:10.1016/S0378-7753(02)00361-0

    Article  CAS  Google Scholar 

  73. http://www.accurec.de/treatment-and-recycling/technologies/lion. Accessed March 2014

  74. http://www.snam.com/activites/recycling-snam-next.php. Accessed April 2014

  75. Ellis TW, Mirza AH (2011) Battery recycling: defining the market and identifying the technology required to keep high value materials in the economy and out of the waste dump. National Institute of Standards and Technology (NIST), USA. http://www.nist.gov/tip/wp/pswp/upload/245_battery_recycling_defining_the_market.pdf. Accessed May 2014

  76. Espinosa DCR, Bernardes AM, Tenóio JAS (2004) An overview on the current processes for the recycling of batteries. J Power Sour 135(1):311–319. doi:10.1016/j.jpowsour.2004.03.083

    Article  CAS  Google Scholar 

  77. Lee CK, Rhee K-I (2002) Preparation of LiCoO2 from spent lithium-ion batteries. J Power Sour 109(1):17–21. doi:10.1016/S0378-7753(02)00037-X

    Article  CAS  Google Scholar 

  78. Bahgat M, Farghaly F, Basir S, Fouad O (2007) Synthesis, characterization and magnetic properties of microcrystalline lithium cobalt ferrite from spent lithium-ion batteries. J Mater Process Technol 183(1):117–121. doi:10.1016/j.jmatprotec.2006.10.005

    Article  CAS  Google Scholar 

  79. Lain MJ (2001) Recycling of lithium ion cells and batteries. J Power Sour 97:736–738. doi:10.1016/S0378-7753(01)00600-0

    Article  Google Scholar 

  80. http://www.recupyl.com/156-hydrometallurgy.html. Accessed June 2014

  81. Zhang P, Yokoyama T, Itabashi O, Suzuki TM, Inoue K (1998) Hydrometallurgical process for recovery of metal values from spent lithium-ion secondary batteries. Hydrometallurgy 47(2):259–271. doi:10.1016/S0304-386X(97)00050-9

    Article  CAS  Google Scholar 

  82. Lupi C, Pasquali M (2003) Electrolytic nickel recovery from lithium-ion batteries. Miner Eng 16(6):537–542. doi:10.1016/S0892-6875(03)00080-3

    Article  CAS  Google Scholar 

  83. Contestabile M, Panero S, Scrosati B (1999) A laboratory-scale lithium battery recycling process. J Power Sour 83(1):75–78. doi:10.1016/S0378-7753(99)00261-X

    Article  CAS  Google Scholar 

  84. Lee CK, Rhee K-I (2003) Reductive leaching of cathodic active materials from lithium ion battery wastes. Hydrometallurgy 68(1):5–10. doi:10.1016/S0304-386X(02)00167-6

    Article  CAS  Google Scholar 

  85. http://ecobatgroup.com/ecobat/rp/index.php. Accessed May 2014

  86. Sloop SE, Parker R (2011) System and method for processing an end-of-life or reduced performance energy storage and/or conversion device using a supercritical fluid. United States Patent US8067107 B2, November 29, 2011

  87. Liu G, Minor A (2012) Pre-lithiated graphite is re-produced by recycling Lithium ion batteries, http://techtransfer.universityofcalifornia.edu/NCD/22271.html, United States Patent, Tech ID: 22271/UC Case 2012-074-0

  88. Zhang T, He Y, Ge L, Fu R, Zhang X, Huang Y (2013) Characteristics of wet and dry crushing methods in the recycling process of spent lithium-ion batteries. J Power Sour 240:766–771. doi:10.1016/j.jpowsour.2013.05.009

    Article  CAS  Google Scholar 

  89. Xiang D, Wu M, Xu J, Guo J, Chen Y (2012) Detecting method of specific capacity of negative electrode material of lithium ion battery after circulation. China Patent CN102610792-A, July 25, 2012

  90. Hamby WD, Slade MD (1978) Process for regenerating and for recovering metallic copper from chloride-containing etching solutions. United States Patent US4252621 A, February 24, 1981

  91. Veit HM, Bernardes AM, Ferreira JZ, Tenório JAS, Malfatti CdF (2006) Recovery of copper from printed circuit boards scraps by mechanical processing and electrometallurgy. J Hazard Mater 137(3):1704–1709. doi:10.1016/j.jhazmat.2006.05.010

    Article  CAS  Google Scholar 

  92. Lee M-S, Ahn J-G, Ahn J-W (2003) Recovery of copper, tin and lead from the spent nitric etching solutions of printed circuit board and regeneration of the etching solution. Hydrometallurgy 70(1–3):23–29. doi:10.1016/S0304-386X(03)00045-8

    Article  CAS  Google Scholar 

  93. Fornari P, Abbruzzese C (1999) Copper and nickel selective recovery by electrowinning from electronic and galvanic industrial solutions. Hydrometallurgy 52(3):209–222. doi:10.1016/S0304-386X(99)00019-5

    Article  CAS  Google Scholar 

  94. Botte GG (2012) Removal of metals from water. Unites States Patent US20120024719 A1, February 2, 2012

  95. Ellis TW, Montenegro JA (2013) Magnetic separation of electrochemical cell materials. United States Patent US20130256198, October 3, 2011

  96. Nelson P, Gallagher KG, Bloom I, Dees DW (2011) Modeling the performance and cost of lithium-ion batteries for electric-drive vehicles. Argonne National Laboratory (ANL). http://www.osti.gov/scitech/biblio/1027714. Accessed Feb 2014

  97. Takahashi H (2013) System for recovering solvent vapor e.g. N -methyl- 2-pyrrolidone (NMP) used at lithium ion battery factory, has heat-use unit that utilizes one portion of heat for heating regeneration of adsorbent of adsorption recovery unit, Japan Patent JP2013111543-A, November 30, 2011

  98. Terashi R, Kawata K (2013) System for purifying N-methyl-2-pyrrolidone discharged from manufacture of electrode, has apparatus comprising vapor permeable film which selectively permeates moisture content with respect to N-methyl-2-pyrrolidone aqueous solution, Japan Patent JP2013018747-A, January 31

  99. Kameyama K, Hirose E, Shiraishi A (2005) Equipment for recovering N-methyl-2-pyrrolidone, has several absorption portions filled with filler, in which N-methyl-2-pyrrolidone is absorbed to water or aqueous liquid by contacting, Japan Patent JP2005238220-A, December 24, 2004

  100. Terashi R, Kawata K (2013) System for purifying N-methyl-2-pyrrolidone during manufacture of electrode, has apparatus comprising vapor permeable film having affinity with respect to water and carrying out evaporation of aqueous solution containing pyrrolidone, Japan Patent JP2013018748-A, January 31

  101. Noll P, Höpel G, Schroeder M, Passerini S, Winter M From lab scale to large volume production: substitution of toxic NMP/PVDF with H2o/CMC/SBR in lithium-ion cells. In: 225th ECS Meeting, Orlando Florida, May 15 2014. ECS Meeting Abstracts The Electrochemical Society, p 163

  102. Chagnes A, Pospiech B (2013) A brief review on hydrometallurgical technologies for recycling spent lithium-ion batteries. J Chem Technol Biotechnol 88(7):1191–1199. doi:10.1002/jctb.4053

    Article  CAS  Google Scholar 

  103. Agubra V, Fergus J (2013) Lithium ion battery anode aging mechanisms. Materials 6(4):1310–1325. doi:10.3390/ma6041310

    Article  CAS  Google Scholar 

  104. Yoon S, Kim H, Oh SM (2001) Surface modification of graphite by coke coating for reduction of initial irreversible capacity in lithium secondary batteries. J Power Sour 94(1):68–73. doi:10.1016/S0378-7753(00)00601-7

    Article  CAS  Google Scholar 

  105. Safari M, Delacourt C (2011) Aging of a commercial graphite/LiFePO4 cell. J Electrochem Soc 158(10):A1123–A1135. doi:10.1149/1.3614529

    Article  CAS  Google Scholar 

  106. Sinha NN, Marks TH, Dahn HM, Smith AJ, Burns J, Coyle DJ, Dahn JJ, Dahn J (2012) The rate of active lithium loss from a soft carbon negative electrode as a function of temperature, time and electrode potential. J Electrochem Soc 159(10):A1672–A1681. doi:10.1149/2.048210jes

    Article  CAS  Google Scholar 

  107. Novák P, Joho F, Lanz M, Rykart B, Panitz J-C, Alliata D, Kötz R, Haas O (2001) The complex electrochemistry of graphite electrodes in lithium-ion batteries. J Power Sour 97:39–46. doi:10.1016/S0378-7753(01)00586-9

    Article  Google Scholar 

  108. Sinha NN, Smith A, Burns JC, Jain G, Eberman K, Scott E, Gardner J, Dahn J (2011) The use of elevated temperature storage experiments to learn about parasitic reactions in wound LiCoO2/graphite cells. J Electrochem Soc 158(11):A1194–A1201. doi:10.1149/2.007111jes

    Article  CAS  Google Scholar 

  109. Zhu X, Zhu Y, Murali S, Stoller MD, Ruoff RS (2011) Nanostructured reduced graphene oxide/Fe2O3 composite as a high-performance anode material for lithium ion batteries. ACS Nano 5(4):3333–3338. doi:10.1021/nn200493r

    Article  CAS  Google Scholar 

  110. Verma P, Novák P (2012) Formation of artificial solid electrolyte interphase by grafting for improving Li-ion intercalation and preventing exfoliation of graphite. Carbon 50(7):2599–2614. doi:10.1016/j.carbon.2012.02.019

    Article  CAS  Google Scholar 

  111. Botte GG (2005) Modeling volume changes due to lithium intercalation in a carbon fiber. Electrochim Acta 50(28):5647–5658. doi:10.1016/j.electacta.2005.03.058

    Article  CAS  Google Scholar 

  112. Yuqin C, Hong L, Lie W, Tianhong L (1997) Irreversible capacity loss of graphite electrode in lithium-ion batteries. J Power Sour 68(2):187–190. doi:10.1016/S0378-7753(96)02549-9

    Article  CAS  Google Scholar 

  113. Simon B, Flandrois S, Guerin K, Fevrier-Bouvier A, Teulat I, Biensan P (1999) On the choice of graphite for lithium ion batteries. J Power Sour 81:312–316. doi:10.1016/S0378-7753(99)00211-6

    Article  Google Scholar 

  114. Zheng H, Ridgway P, Song X, Xun S, Chong J, Liu G, Battaglia V (2011) Comparison of cycling performance of lithium ion cell anode graphites. Electrochem Soc Trans 33(29):91–100. doi:10.1149/2.006205jes

    CAS  Google Scholar 

  115. Andersson AM, Edström K, Thomas JO (1999) Characterisation of the ambient and elevated temperature performance of a graphite electrode. J Power Sour 81:8–12. doi:10.1016/S0378-7753(99)00185-8

    Article  Google Scholar 

  116. Peled E, Golodnitsky D, Penciner J (2011) The anode/electrolyte interface. In: Handbook of battery materials. Wiley, KGaA, pp 479–523. doi:10.1002/9783527637188.ch16

  117. Aurbach D, Markovsky B, Weissman I, Levi E, Ein-Eli Y (1999) On the correlation between surface chemistry and performance of graphite negative electrodes for Li ion batteries. Electrochim Acta 45:67–86. doi:10.1016/S0013-4686(99)00194-2

    Article  CAS  Google Scholar 

  118. Dey AN, Sullivan BP (1970) The electrochemical decomposition of propylene carbonate on graphite. J Electrochem Soc 117(2):222–224. doi:10.1149/1.2407470

    Article  CAS  Google Scholar 

  119. Ra Fong, von Sacken U, Dahn JR (1990) Studies of lithium intercalation into carbons using nonaqueous electrochemical cells. J Electrochem Soc 137(7):2009–2013. doi:10.1149/1.2086855

    Article  Google Scholar 

  120. Shu ZX, McMillan RS, Murray JJ (1993) Electrochemical Intercalation of lithium into graphite. J Electrochem Soc 140(4):922–927. doi:10.1149/1.2056228

    Article  CAS  Google Scholar 

  121. Aurbach D, Ein-Eli Y, Chusid O, Carmeli Y, Babai M, Yamin H (1994) The correlation between the surface chemistry and the performance of Li-carbon intercalation anodes for rechargeable ‘rocking-chair’ type batteries. J Electrochem Soc 141(3):603–611. doi:10.1149/1.2054777

    Article  CAS  Google Scholar 

  122. Besenhard JO, Winter M, Yang J, Biberacher W (1995) Filming mechanism of lithium-carbon anodes in organic and inorganic electrolytes. J Power Sour 54(2):228–231. doi:10.1016/0378-7753(94)02073-C

    Article  CAS  Google Scholar 

  123. Komaba S, Kaplan B, Ohtsuka T, Kataoka Y, Kumagai N, Groult H (2003) Inorganic electrolyte additives to suppress the degradation of graphite anodes by dissolved Mn(II) for lithium-ion batteries. J Power Sour 119–121:378–382. doi:10.1016/S0378-7753(03)00224-6

    Article  CAS  Google Scholar 

  124. Zhang SS (2006) A review on electrolyte additives for lithium-ion batteries. J Power Sour 162(2):1379–1394. doi:10.1016/j.jpowsour.2006.07.074

    Article  CAS  Google Scholar 

  125. Liu Z, Yu A, Lee JY (1999) Modifications of synthetic graphite for secondary lithium-ion battery applications. J Power Sour 81–82:187–191. doi:10.1016/S0378-7753(98)00243-2

    Article  Google Scholar 

  126. Bourlinos AB, Gournis D, Petridis D, Szabó T, Szeri A, Dékány I (2003) Graphite oxide: chemical reduction to graphite and surface modification with primary aliphatic amines and amino acids. Langmuir 19(15):6050–6055. doi:10.1021/la026525h

    Article  CAS  Google Scholar 

  127. Li H, Zhou H (2011) Enhancing the performances of Li-ion batteries by carbon-coating: present and future. Chem Commun 48(9):1201–1217. doi:10.1039/c1cc14764a

    Article  Google Scholar 

  128. Wu YP, Jiang C, Wan C, Holze R (2002) Modified natural graphite as anode material for lithium ion batteries. J Power Sour 111(2):329–334. doi:10.1016/S0378-7753(02)00349-X

    Article  CAS  Google Scholar 

  129. Peled E, Golodnitsky D, Ulus A, Yufit V (2004) Effect of carbon substrate on SEI composition and morphology. Electrochim Acta 50(2–3):391–395. doi:10.1016/j.electacta.2004.01.130

    Article  CAS  Google Scholar 

  130. Spahr ME, Buqa H, Würsig A, Goers D, Hardwick L, Novák P, Krumeich F, Dentzer J, Vix-Guterl C (2006) Surface reactivity of graphite materials and their surface passivation during the first electrochemical lithium insertion. J Power Sour 153(2):300–311. doi:10.1016/j.jpowsour.2005.05.032

    Article  CAS  Google Scholar 

  131. Winter M, Novák P, Monnier A (1998) Graphites for lithium-ion cells: the correlation of the first-cycle charge loss with the Brunauer–Emmett–Teller surface area. J Electrochem Soc 145(2):428–436. doi:10.1149/1.1838281

    Article  CAS  Google Scholar 

  132. Ng SH, Vix-Guterl C, Bernardo P, Tran N, Ufheil J, Buqa H, Dentzer J, Gadiou R, Spahr ME, Goers D, Novák P (2009) Correlations between surface properties of graphite and the first cycle specific charge loss in lithium-ion batteries. Carbon 47(3):705–712. doi:10.1016/j.carbon.2008.11.008

    Article  CAS  Google Scholar 

  133. Novák P, Ufheil J, Buqa H, Krumeich F, Spahr ME, Goers D, Wilhelm H, Dentzer J, Gadiou R, Vix-Guterl C (2007) The importance of the active surface area of graphite materials in the first lithium intercalation. J Power Sour 174(2):1082–1085. doi:10.1016/j.jpowsour.2007.06.036

    Article  CAS  Google Scholar 

  134. Chung GC, Jun SH, Lee KY, Kim MH (1999) Effect of surface structure on the irreversible capacity of various graphitic carbon electrodes. J Electrochem Soc 146(5):1664–1671. doi:10.1149/1.1391823

    Article  CAS  Google Scholar 

  135. Wang H-Y, Wang F-M (2013) Electrochemical investigation of an artificial solid electrolyte interface for improving the cycle-ability of lithium ion batteries using an atomic layer deposition on a graphite electrode. J Power Sour 233:1–5. doi:10.1016/j.jpowsour.2013.01.134

    Article  CAS  Google Scholar 

  136. Peled E, Menachem C, Bar-Tow D, Melman A (1996) Improved graphite anode for lithium-ion batteries chemically: bonded solid electrolyte interface and nanochannel formation. J Electrochem Soc 143(1):L4–L7. doi:10.1149/1.1836372

    Article  CAS  Google Scholar 

  137. Wu YP, Jiang C, Wan C, Holze R (2003) Anode materials for lithium ion batteries by oxidative treatment of common natural graphite. Solid State Ion 156(3–4):283–290. doi:10.1016/S0167-2738(02)00680-X

    Article  CAS  Google Scholar 

  138. Spahr ME, Wilhelm H, Joho F, Panitz J-C, Wambach J, Novák P, Dupont-Pavlovsky N (2002) Purely hexagonal graphite and the influence of surface modifications on its electrochemical lithium insertion properties. J Electrochem Soc 149(8):A960–A966. doi:10.1149/1.1486238

    Article  CAS  Google Scholar 

  139. Yu P, Ritter JA, White RE, Popov BN (2000) Ni-composite microencapsulated graphite as the negative electrode in lithium-ion batteries II: electrochemical impedance and self-discharge studies. J Electrochem Soc 147(6):2081–2085. doi:10.1149/1.1393489

    Article  CAS  Google Scholar 

  140. Yu P, Ritter JA, White RE, Popov BN (2000) Ni-composite microencapsulated graphite as the negative electrode in lithium-ion batteries I. Initial irreversible capacity study. J Electrochem Soc 147(4):1280–1285. doi:10.1149/1.1393350

    Article  CAS  Google Scholar 

  141. Shi L, Wang Q, Li H, Wang Z, Huang X, Chen L (2001) Electrochemical performance of Ni-deposited graphite anodes for lithium secondary batteries. J Power Sour 102(1–2):60–67. doi:10.1016/S0378-7753(01)00773-X

    Article  CAS  Google Scholar 

  142. Takamura T, Sumiya K, Suzuki J, Yamada C, Sekine K (1999) Enhancement of Li doping/undoping reaction rate of carbonaceous materials by coating with an evaporated metal film. J Power Sour 81–82:368–372. doi:10.1016/S0378-7753(98)00220-1

    Article  Google Scholar 

  143. Veeraraghavan B, Durairajan A, Haran B, Popov B, Guidotti R (2002) Study of Sn-coated graphite as anode material for secondary lithium-ion batteries. J Electrochem Soc 149(6):A675–A681. doi:10.1149/1.1470653

    Article  CAS  Google Scholar 

  144. Lee JY, Zhang R, Liu Z (2000) Dispersion of Sn and SnO on carbon anodes. J Power Sour 90(1):70–75. doi:10.1016/S0378-7753(00)00450-X

    Article  CAS  Google Scholar 

  145. Momose H, Honbo H, Takeuchi S, Nishimura K, Horiba T, Muranaka Y, Kozono Y, Miyadera H (1997) X-ray photoelectron spectroscopy analyses of lithium intercalation and alloying reactions on graphite electrodes. J Power Sour 68(2):208–211. doi:10.1016/S0378-7753(96)02627-4

    Article  CAS  Google Scholar 

  146. Nishimura K, Honbo H, Takeuchi S, Horiba T, Oda M, Koseki M, Muranaka Y, Kozono Y, Miyadera H (1997) Design and performance of 10 Wh rechargeable lithium batteries. J Power Sour 68(2):436–439. doi:10.1016/S0378-7753(97)02534-2

    Article  CAS  Google Scholar 

  147. Kim S-S, Kadoma Y, Ikuta H, Uchimoto Y, Wakihara M (2001) Electrochemical performance of natural graphite by surface modification using aluminum. Electrochem Solid-State Lett 4(8):A109–A112. doi:10.1149/1.1379829

    Article  CAS  Google Scholar 

  148. Wu Y, Jiang C, Wan C, Tsuchida E (2000) Composite anode material for lithium ion battery with low sensitivity to water. Electrochem Commun 2(9):626–629. doi:10.1016/S1388-2481(00)00091-6

    Article  CAS  Google Scholar 

  149. Wu YP, Jiang C, Wan C, Holze R (2002) Composite materials of silver and natural graphite as anode with low sensibility to humidity. J Power Sour 112(1):255–260. doi:10.1016/S0378-7753(02)00392-0

    Article  CAS  Google Scholar 

  150. Lee JK, Ryu DH, Ju JB, Shul YG, Cho BW, Park D (2002) Electrochemical characteristics of graphite coated with tin-oxide and copper by fluidised-bed chemical vapour deposition. J Power Sour 107(1):90–97. doi:10.1016/S0378-7753(01)00985-5

    Article  CAS  Google Scholar 

  151. Huang H, Kelder EM, Schoonman J (2001) Graphite-metal oxide composites as anode for Li-ion batteries. J Power Sour 97–98:114–117. doi:10.1016/S0378-7753(01)00597-3

    Article  Google Scholar 

  152. Jung YS, Cavanagh AS, Riley LA, Kang S-H, Dillon AC, Groner MD, George SM, Lee S-H (2010) Ultrathin direct atomic layer deposition on composite electrodes for highly durable and safe Li-ion batteries. Adv Mater 22(19):2172–2176. doi:10.1002/adma.200903951

    Article  CAS  Google Scholar 

  153. Lee S-E, Kim E, Cho J (2007) Improvement of electrochemical properties of natural graphite anode materials with an ovoid morphology by AlPO4 coating. Electrochem Solid-State Lett 10(1):A1–A4. doi:10.1149/1.2364308

    Article  CAS  Google Scholar 

  154. Veeraraghavan B, Paul J, Haran B, Popov B (2002) Study of polypyrrole graphite composite as anode material for secondary lithium-ion batteries. J Power Sour 109(2):377–387. doi:10.1016/S0378-7753(02)00105-2

    Article  CAS  Google Scholar 

  155. Pan Q, Guo K, Wang L, Fang S (2002) Ionic conductive copolymer encapsulated graphite as an anode material for lithium ion batteries. Solid State Ionics 149(3–4):193–200. doi:10.1016/S0167-2738(02)00278-3

    Article  CAS  Google Scholar 

  156. Guo K, Pan Q, Fang S (2002) Poly(acrylonitrile) encapsulated graphite as anode materials for lithium ion batteries. J Power Sour 111(2):350–356. doi:10.1016/S0378-7753(02)00347-6

    Article  CAS  Google Scholar 

  157. Wang H, Yoshio M (2001) Carbon-coated natural graphite prepared by thermal vapor decomposition process, a candidate anode material for lithium-ion battery. J Power Sour 93(1–2):123–129. doi:10.1016/S0378-7753(00)00552-8

    Article  CAS  Google Scholar 

  158. Lee H-Y, Baek J-K, Jang S-W, Lee S-M, Hong S-T, Lee K-Y, Kim M-H (2001) Characteristics of carbon-coated graphite prepared from mixture of graphite and polyvinylchloride as anode materials for lithium ion batteries. J Power Sour 101(2):206–212. doi:10.1016/S0378-7753(01)00671-1

    Article  CAS  Google Scholar 

  159. Ito S, Nakaoka K, Kawamura M, Ui K, Fujimoto K, Koura N (2005) Lithium battery having a large capacity using Fe3O4 as a cathode material. J Power Sour 146:319–322. doi:10.1016/j.jpowsour.2005.03.130

    Article  CAS  Google Scholar 

  160. Mitra S, Poizot P, Finke A, Tarascon JM (2006) Growth and electrochemical characterization versus lithium of Fe3O4 electrodes made by electrodeposition. Adv Funct Mater 16(17):2281–2287. doi:10.1002/adfm.200500753

    Article  CAS  Google Scholar 

  161. Taberna PL, Mitra S, Poizot P, Simon P, Tarascon JM (2006) High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications. Nat Mater 5(7):567–573. doi:10.1038/nmat1672

    Article  CAS  Google Scholar 

  162. Zhang W-M, Wu X-L, Hu J-S, Guo Y-G, Wan L-J (2008) Carbon coated Fe3O4 nanospindles as a superior anode material for lithium-ion batteries. Adv Funct Mater 18(24):3941–3946. doi:10.1002/adfm.200801386

    Article  CAS  Google Scholar 

  163. Muraliganth T, Vadivel Murugan A, Manthiram A (2009) Facile synthesis of carbon-decorated single-crystalline Fe3O4 nanowires and their application as high performance anode in lithium ion batteries. Chem Commun 47:7360–7362. doi:10.1039/b916376j

    Article  CAS  Google Scholar 

  164. Liu H, Wang G, Wang J, Wexler D (2008) Magnetite/carbon core-shell nanorods as anode materials for lithium-ion batteries. Electrochem Commun 10(12):1879–1882. doi:10.1016/j.elecom.2008.09.036

    Article  CAS  Google Scholar 

  165. Liu J, Li Y, Fan H, Zhu Z, Jiang J, Ding R, Hu Y, Huang X (2010) Iron oxide-based nanotube arrays derived from sacrificial template-accelerated hydrolysis: large-area design and reversible lithium storage. Chem Mater 22(1):212–217. doi:10.1021/cm903099w

    Article  CAS  Google Scholar 

  166. Zhu T, Chen JS, Lou XW (2011) Glucose-assisted one-pot synthesis of FeOOH nanorods and their transformation to Fe3O4@carbon nanorods for application in lithium ion batteries. J Phys Chem C 115(19):9814–9820. doi:10.1021/jp2013754

    Article  CAS  Google Scholar 

  167. Chen JS, Zhang Y, Lou XW (2011) One-pot synthesis of uniform Fe3O4 nanospheres with carbon matrix support for improved lithium storage capabilities. ACS Appl Mater Interfaces 3(9):3276–3279. doi:10.1021/am201079z

    Article  CAS  Google Scholar 

  168. Kang N, Park JH, Choi J, Jin J, Chun J, Jung IG, Jeong J, Park J-G, Lee SM, Kim HJ, Son SU (2012) Nanoparticulate iron oxide tubes from microporous organic nanotubes as stable anode materials for lithium ion batteries. Angew Chem Int Ed 51(27):6626–6630. doi:10.1002/anie.201202244

    Article  CAS  Google Scholar 

  169. Wang Z, Zhou L, Lou XW (2012) Metal oxide hollow nanostructures for lithium-ion batteries. Adv Mater 24(14):1903–1911. doi:10.1002/adma.201200469

    Article  CAS  Google Scholar 

  170. Cui Z-M, Jiang L-Y, Song W-G, Guo Y-G (2009) High-yield gas-liquid interfacial synthesis of highly dispersed Fe3O4 nanocrystals and their application in lithium-ion batteries. Chem Mater 21(6):1162–1166. doi:10.1021/cm8033609

    Article  CAS  Google Scholar 

  171. Zhou G, Wang D-W, Li F, Zhang L, Li N, Wu Z-S, Wen L, Lu GQ, Cheng H-M (2010) Graphene-wrapped Fe3O4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries. Chem Mater 22(18):5306–5313. doi:10.1021/cm101532x

    Article  CAS  Google Scholar 

  172. Arico AS, Bruce P, Scrosati B, Tarascon J-M, van Schalkwijk W (2005) Nanostructured materials for advanced energy conversion and storage devices. Nat Mater 4(5):366–377. doi:10.1038/nmat1368

    Article  CAS  Google Scholar 

  173. Guo Y-G, Hu J-S, Wan L-J (2008) Nanostructured materials for electrochemical energy conversion and storage devices. Adv Mater 20(15):2878–2887. doi:10.1002/adma.200800627

    Article  CAS  Google Scholar 

  174. He C, Wu S, Zhao N, Shi C, Liu E, Li J (2013) Carbon-encapsulated Fe3O4 nanoparticles as a high-rate lithium ion battery Anode material. ACS Nano 7(5):4459–4469. doi:10.1021/nn401059h

    Article  CAS  Google Scholar 

  175. Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon JM (2000) Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407(6803):496–499. doi:10.1038/35035045

    Article  CAS  Google Scholar 

  176. Lou XW, Wang Y, Yuan C, Lee JY, Archer LA (2006) Template-free synthesis of SnO2 hollow nanostructures with high lithium storage capacity. Adv Mater 18(17):2325–2329. doi:10.1002/adma.200600733

    Article  CAS  Google Scholar 

  177. Jiao F, Bruce PG (2007) Mesoporous crystalline β-MnO2—a reversible positive electrode for rechargeable lithium batteries. Adv Mater 19(5):657–660. doi:10.1002/adma.200602499

    Article  CAS  Google Scholar 

  178. Delmer O, Balaya P, Kienle L, Maier J (2008) Enhanced potential of amorphous electrode materials: case study of RuO2. Adv Mater 20(3):501–505. doi:10.1002/adma.200701349

    Article  CAS  Google Scholar 

  179. Dominko R, Goupil JM, Bele M, Gaberscek M, Remskar M, Hanzel D, Jamnik J (2005) Impact of LiFePO4/C composites porosity on their electrochemical performance. J Electrochem Soc 152(5):A858–A863. doi:10.1149/1.1872674

    Article  CAS  Google Scholar 

  180. Cao Q, Zhang HP, Wang GJ, Xia Q, Wu YP, Wu HQ (2007) A novel carbon-coated LiCoO2 as cathode material for lithium ion battery. Electrochem Commun 9(5):1228–1232. doi:10.1016/j.elecom.2007.01.017

    Article  CAS  Google Scholar 

  181. Hu YS, Guo YG, Dominko R, Gaberscek M, Jamnik J, Maier J (2007) Improved electrode performance of porous LiFePO4 using RuO2 as an oxidic nanoscale interconnect. Adv Mater 19(15):1963–1966. doi:10.1002/adma.200700697

    Article  CAS  Google Scholar 

  182. Hu J, Li H, Huang X, Chen L (2006) Improve the electrochemical performances of Cr2O3 anode for lithium ion batteries. Solid State Ionics 177(26–32):2791–2799. doi:10.1016/j.ssi.2006.03.043

    Article  CAS  Google Scholar 

  183. Aurbach D, Levi MD, Levi E, Schechter A (1997) Failure and stabilization mechanisms of graphite electrodes. J Phys Chem B 101(12):2195–2206. doi:10.1021/jp962815t

    Article  CAS  Google Scholar 

  184. Needham SA, Wang GX, Konstantinov K, Tournayre Y, Lao Z, Liu HK (2006) Electrochemical performance of Co3O4/C composite anode materials. Electrochem Solid-State Lett 9(7):A315–A319. doi:10.1149/1.2197108

    Article  CAS  Google Scholar 

  185. Zaghib K, Nadeau G, Kinoshita K (2001) Influence of edge and basal plane sites on the electrochemical behavior of flake-like natural graphite for Li-ion batteries. J Power Sour 97:97–103. doi:10.1016/S0378-7753(01)00596-1

    Article  Google Scholar 

  186. Kim T-H, Jeon EK, Ko Y, Jang BY, Kim B-S, Song H-K (2014) Enlarging the d-spacing of graphite and polarizing its surface charge for driving lithium ions fast. J Mater Chem A 2(20):7600–7605. doi:10.1039/c3ta15360f

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from the Chemical and Biomolecular Engineering department and the Center for Electrochemical Research (CEER) at Ohio University is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerardine G. Botte.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moradi, B., Botte, G.G. Recycling of graphite anodes for the next generation of lithium ion batteries. J Appl Electrochem 46, 123–148 (2016). https://doi.org/10.1007/s10800-015-0914-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-015-0914-0

Keywords

Navigation