Skip to main content
Log in

Betalain and anthocyanin dye-sensitized solar cells

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

In the present work, the mechanism behind the functioning of the eco-friendly dye-sensitized solar cell was explored. Dye-sensitized solar cells were fabricated using natural dyes extracted from common pear (Opuntia dillenii) and red tamarind (Tamarindus indica), and 1:1 mixture. Betalain and anthocyanin were identified as the main pigments that sensitize the semiconductor TiO2 film. The best conversion efficiency of 0.47 % was achieved from betalain dyes and 0.14 % from anthocyanin dye-sensitized solar cell [under standard Air Mass 1.5 illumination (85 mW cm−2)]. The mixture of dye (1:1 mixture) adsorbed onto TiO2 exhibited an efficiency of 0.20 %. The light absorption behavior of extracted dyes was studied using ultraviolet–visible analysis. The influence of the binding nature of the dyes with TiO2 surface on the efficiency of the solar cells was analyzed through Fourier transform infra-red analysis. The electrochemical impedance spectroscopy was used to find out the internal charge transfer resistance of the cells. The device incident photon-to-current efficiency was obtained from 5 to 25 % for different natural dyes and found to coincide with the photocurrent–voltage characteristics and electrochemical impedance spectroscopy analysis.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Nazeeruddin MK, Baranoff E, Grätzel M (2011) Dye-sensitized solar cells: a brief overview. Sol Energy 85:1172–1178. doi:10.1016/j.solener.2011.01.018

    Article  CAS  Google Scholar 

  2. O’Regan B, Grätzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353:737–740. doi:10.1038/353737a0

    Article  Google Scholar 

  3. Lee J-K, Yang M (2011) Progress in light harvesting and charge injection of dye-sensitized solar cells. Mater Sci Eng B 176:1142–1160. doi:10.1016/j.mseb.2011.06.018

    Article  CAS  Google Scholar 

  4. Hagfeldt A, Boschloo G, Sun L et al (2010) Dye-sensitized solar cells. Chem Rev 110:6595–6663. doi:10.1002/chem.201101923

    Article  CAS  Google Scholar 

  5. Narayan MR (2012) Review: dye sensitized solar cells based on natural photosensitizers. Renew Sustain Energy Rev 16:208–215. doi:10.1016/j.rser.2011.07.148

    CAS  Google Scholar 

  6. Zhou H, Wu L, Gao Y, Ma T (2011) Dye-sensitized solar cells using 20 natural dyes as sensitizers. J Photochem Photobiol A Chem 219:188–194. doi:10.1016/j.jphotochem.2011.02.008

    Article  CAS  Google Scholar 

  7. Liu B, Zhao X, Luo W (2008) The synergistic effect of two photosynthetic pigments in dye-sensitized mesoporous TiO2 solar cells. Dye Pigment 76:327–331. doi:10.1016/j.dyepig.2006.09.004

    Article  CAS  Google Scholar 

  8. Park KH, Kim TY, Park JY et al (2013) Photochemical properties of dye-sensitized solar cell using mixed natural dyes extracted from Gardenia Jasminoide Ellis. J Electroanal Chem 689:21–25. doi:10.1016/j.jelechem.2012.11.026

    Article  CAS  Google Scholar 

  9. Patrocínio AOT, Mizoguchi SK, Paterno LG et al (2009) Efficient and low cost devices for solar energy conversion: efficiency and stability of some natural-dye-sensitized solar cells. Synth Met 159:2342–2344. doi:10.1016/j.synthmet.2009.08.027

    Article  Google Scholar 

  10. Calogero G, Di Marco G, Cazzanti S et al (2010) Efficient dye-sensitized solar cells using red turnip and purple wild Sicilian prickly pear fruits. Int J Mol Sci 11:254–267. doi:10.3390/ijms11010254

    Article  CAS  Google Scholar 

  11. Strack D, Vogt T, Schliemann W (2003) Recent advances in betalain research. Phytochemistry 62:247–269. doi:10.1016/S0031-9422(02)00564-2

    Article  CAS  Google Scholar 

  12. Castellar MR, Obón JM, Alacid M, Fernández-López JA (2008) Fermentation of Opuntia stricta (Haw.) fruits for betalains concentration. J Agric Food Chem 56:4253–4257. doi:10.1021/jf703699c

    Article  CAS  Google Scholar 

  13. Chang SF, Hsieh CL, Yen GC (2008) The protective effect of Opuntia dillenii Haw fruit against low-density lipoprotein peroxidation and its active compounds. Food Chem 106:569–575. doi:10.1016/j.foodchem.2007.06.017

    Article  CAS  Google Scholar 

  14. Davies K (2009) Annual plant reviews, plant pigments and their manipulation. Wiley, Hoboken

    Google Scholar 

  15. Singh AMBG, Durai A, Murugeasan S (2012) Evaluation of colour and stability of anthocyanin in red tamarind (Tamarindus indica L). Int J Adv Life Sci (IJALS) 5:137–144

    Google Scholar 

  16. Ludin NA, Al-Alwani Mahmoud AM, Bakar Mohamad A et al (2014) Review on the development of natural dye photosensitizer for dye-sensitized solar cells. Renew Sustain Energy Rev 31:386–396. doi:10.1016/j.rser.2013.12.001

    Article  CAS  Google Scholar 

  17. Gokilamani N, Muthukumarasamy N, Thambidurai M et al (2014) Basella alba rubra spinach pigment-sensitized TiO2 thin film-based solar cells. Appl Nanosci. doi:10.1007/s13204-014-0317-2

    Google Scholar 

  18. Hemmatzadeh R, Mohammadi A (2013) Improving optical absorptivity of natural dyes for fabrication of efficient dye-sensitized solar cells. J Theor Appl Phys 57:1–7. doi:10.1186/2251-7235-7-57

    Google Scholar 

  19. Isah KU, Ahmadu U, Idris A et al (2015) Betalain pigments as natural photosensitizers for dye-sensitized solar cells: the effect of dye pH on the photoelectric parameters. Mater Renew Sustain Energy 4:39. doi:10.1007/s40243-014-0039-0

    Article  Google Scholar 

  20. Sengupta D, Mondal B, Mukherjee K (2015) Visible light absorption and photo-sensitizing properties of spinach leaves and beetroot extracted natural dyes. Spectrochim Acta Part A Mol Biomol Spectrosc 148:85–92. doi:10.1016/j.saa.2015.03.120

    Article  CAS  Google Scholar 

  21. Thankappan A, Divya S, Augustine AK et al (2015) Highly efficient betanin dye based ZnO and ZnO/Au Schottky barrier solar cell. Thin Solid Films 583:102–107. doi:10.1016/j.tsf.2015.03.052

    Article  CAS  Google Scholar 

  22. Zolkepli Z, Lim A, Ekanayake P, Tennakoon K (2015) Efficiency enhancement of cocktail dye of Ixora coccinea and Tradescantia spathacea in DSSC. J Biophys 2015:1–8. doi:10.1155/2015/582091

  23. Adel R, Abdallah T, Moustafa YM et al (2015) Effect of polymer electrolyte on the performance of natural dye sensitized solar cells. Superlattices Microstruct 86:62–67. doi:10.1016/j.spmi.2015.07.024

    Article  CAS  Google Scholar 

  24. Chien CY, Hsu BD (2013) Optimization of the dye-sensitized solar cell with anthocyanin as photosensitizer. Sol Energy 98:203–211. doi:10.1016/j.solener.2013.09.035

    Article  CAS  Google Scholar 

  25. Lim A, Pg Damit DNFB, Ekanayake P (2015) Tailoring of extraction solvent of Ixora coccinea flower to enhance charge transport properties in dye-sensitized solar cells. Ionics (Kiel) 21:2897–2904. doi:10.1007/s11581-015-1489-9

    Article  CAS  Google Scholar 

  26. Munawaroh H, Adillah GF, Saputri LNMZ et al (2016) The co-pigmentation of anthocyanin isolated from mangosteen pericarp (Garcinia Mangostana L.) as natural dye for dye-sensitized solar cells (DSSC). IOP Conf Ser Mater Sci Eng 107:012061. doi:10.1088/1757-899X/107/1/012061

    Article  Google Scholar 

  27. Prima EC, Al Qibtiya M, Yuliarto B et al (2016) Influence of anthocyanin co-pigment on electron transport and performance in black rice dye-sensitized solar cell. Ionics (Kiel). doi:10.1007/s11581-016-1673-6

    Google Scholar 

  28. Reda A, Tadesse S, Yohannes T (2014) Dye-sensitized solar cell using natural dyes extracted from Morus atba Lam fruit and Striga hermonthica flower. J Photonics Energy 4:043091. doi:10.1117/1.JPE.4.043091

    Article  Google Scholar 

  29. Isah Kimpa M (2012) Photoelectric characterization of dye sensitized solar cells using natural dye from pawpaw leaf and flame tree flower as sensitizers. Mater Sci Appl 03:281–286. doi:10.4236/msa.2012.35041

    Google Scholar 

  30. Zhang D, Lanier SM, Downing JA et al (2008) Betalain pigments for dye-sensitized solar cells. J Photochem Photobiol A Chem 195:72–80. doi:10.1016/j.jphotochem.2007.07.038

    Article  CAS  Google Scholar 

  31. Kumara NTRN, Ekanayake P, Lim A et al (2013) Layered co-sensitization for enhancement of conversion efficiency of natural dye sensitized solar cells. J Alloys Compd 581:186–191. doi:10.1016/j.jallcom.2013.07.039

    Article  CAS  Google Scholar 

  32. Hao S, Wu J, Huang Y, Lin J (2006) Natural dyes as photosensitizers for dye-sensitized solar cell. Sol Energy 80:209–216. doi:10.1016/j.solener.2005.05.009

    Article  CAS  Google Scholar 

  33. Wongcharee K, Meeyoo V, Chavadej S (2007) Dye-sensitized solar cell using natural dyes extracted from rosella and blue pea flowers. Sol Energy Mater Sol Cells 91:566–571. doi:10.1016/j.solmat.2006.11.005

    Article  CAS  Google Scholar 

  34. Polo A, Murakamiiha N (2006) Blue sensitizers for solar cells: natural dyes from Calafate and Jaboticaba. Sol Energy Mater Sol Cells 90:1936–1944. doi:10.1016/j.solmat.2006.02.006

    Article  CAS  Google Scholar 

  35. Hernandez-Martinez AR, Estevez M, Vargas S et al (2011) New dye-sensitized solar cells obtained from extracted bracts of Bougainvillea glabra and spectabilis betalain pigments by different purification processes. Int J Mol Sci 12:5565–5576. doi:10.3390/ijms12095565

    Article  CAS  Google Scholar 

  36. Calogero G, Di Marco G (2008) Red Sicilian orange and purple eggplant fruits as natural sensitizers for dye-sensitized solar cells. Sol Energy Mater Sol Cells 92:1341–1346. doi:10.1016/j.solmat.2008.05.007

    Article  CAS  Google Scholar 

  37. Oprea CI, Dumbravă A, Enache I et al (2012) A combined experimental and theoretical study of natural betalain pigments used in dye-sensitized solar cells. J Photochem Photobiol A Chem 240:5–13. doi:10.1016/j.jphotochem.2012.05.003

    Article  CAS  Google Scholar 

  38. Narayan M, Raturi A (2011) Investigation of some common Fijian flower dyes as photosensi-tizers for dye sensitized solar cellsabstract. Appl Sol Energy 47:112–117. doi:10.3103/S0003701X11020149

    Article  Google Scholar 

  39. Sandquist C, McHale JL (2011) Improved efficiency of betanin-based dye-sensitized solar cells. J Photochem Photobiol A Chem 221:90–97. doi:10.1016/j.jphotochem.2011.04.030

    Article  CAS  Google Scholar 

  40. Cherepy NJ, Smestad GP, Grätzel M, Zhang JZ (1997) Ultrafast electron injection: implications for a photoelectrochemical cell utilizing an anthocyanin dye-sensitized TiO2 nanocrystalline electrode. J Phys Chem B 101:9342–9351. doi:10.1021/jp972197w

    Article  CAS  Google Scholar 

  41. Hemalatha KV, Karthick SN, Justin Raj C et al (2012) Performance of Kerria japonica and Rosa chinensis flower dyes as sensitizers for dye-sensitized solar cells. Spectrochim Acta Part A Mol Biomol Spectrosc 96:305–309. doi:10.1016/j.saa.2012.05.027

    Article  CAS  Google Scholar 

  42. Calogero G, Yum J-H, Sinopoli A et al (2012) Anthocyanins and betalains as light-harvesting pigments for dye-sensitized solar cells. Sol Energy 86:1563–1575. doi:10.1016/j.solener.2012.02.018

    Article  CAS  Google Scholar 

  43. Chang H, Lo Y-J (2010) Pomegranate leaves and mulberry fruit as natural sensitizers for dye-sensitized solar cells. Sol Energy 84:1833–1837. doi:10.1016/j.solener.2010.07.009

    Article  CAS  Google Scholar 

  44. Chang H, Wu HM, Chen TL et al (2010) Dye-sensitized solar cell using natural dyes extracted from spinach and ipomoea. J Alloys Compd 495:606–610. doi:10.1016/j.jallcom.2009.10.057

    Article  CAS  Google Scholar 

  45. Furukawa S, Iino H, Iwamoto T et al (2009) Characteristics of dye-sensitized solar cells using natural dye. Thin Solid Films 518:526–529. doi:10.1016/j.tsf.2009.07.045

    Article  CAS  Google Scholar 

  46. Hug H, Bader M, Mair P, Glatzel T (2014) Biophotovoltaics: natural pigments in dye-sensitized solar cells. Appl Energy 115:216–225. doi:10.1016/j.apenergy.2013.10.055

    Article  CAS  Google Scholar 

  47. Lai WH, Su YH, Teoh LG, Hon MH (2008) Commercial and natural dyes as photosensitizers for a water-based dye-sensitized solar cell loaded with gold nanoparticles. J Photochem Photobiol A Chem 195:307–313. doi:10.1016/j.jphotochem.2007.10.018

    Article  CAS  Google Scholar 

  48. Lim A, Kumara NTRN, Tan AL et al (2015) Potential natural sensitizers extracted from the skin of Canarium odontophyllum fruits for dye-sensitized solar cells. Spectrochim Acta Part A Mol Biomol Spectrosc 138:596–602. doi:10.1016/j.saa.2014.11.102

    Article  CAS  Google Scholar 

  49. Luo P, Niu H, Zheng G et al (2009) From salmon pink to blue natural sensitizers for solar cells: Canna indica L., Salvia splendens, cowberry and Solanum nigrum L. Spectrochim Acta Part A Mol Biomol Spectrosc 74:936–942. doi:10.1016/j.saa.2009.08.039

    Article  Google Scholar 

  50. Li W, Jin G, Hu H et al (2015) Phosphotungstic acid and WO3 incorporated TiO2 thin films as novel photoanodes in dye-sensitized solar cells. Electrochim Acta 153:499–507. doi:10.1016/j.electacta.2014.12.030

    Article  CAS  Google Scholar 

  51. Motlak M, Barakat NAM, Akhtar MS et al (2015) High-efficiency dye-sensitized solar cells based on nitrogen and graphene oxide co-incorporated TiO2 nanofibers photoelectrode. Chem Eng J 268:153–161. doi:10.1016/j.cej.2015.01.065

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rayar Victor Williams.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramamoorthy, R., Radha, N., Maheswari, G. et al. Betalain and anthocyanin dye-sensitized solar cells. J Appl Electrochem 46, 929–941 (2016). https://doi.org/10.1007/s10800-016-0974-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-016-0974-9

Keywords

Navigation