Skip to main content
Log in

Phase structure and electrochemical performance control of 0.5Li2MnO3⋅0.5LiNi1/3Co1/3Mn1/3O2 based on the concentration adjustment in a molten salt synthesis system

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The lithium-rich layered 0.5Li2MnO3⋅0.5LiNi1/3Co1/3Mn1/3O2 material was simply prepared by the molten-salt method. Effect of reactant concentration on phase and electrochemical performance was systemically studied by the X-ray diffraction, the galvanostatical charge/discharge and the dQ/dV profile, respectively. It can be confirmed that the obtained phase is sensitive to the reactant concentration. The spinel structure LiMn2O4 or Li4Mn5O12 phase easily occurs, when reactant concentration is low during the molten salt synthesis of Lithium-rich cathode material. The 0.5Li2MnO3–0.5LiNi1/3Co1/3Mn1/3O2 material with partial Li4Mn5O12 phase shows the higher specific capacity, and delivers a initial discharge capacity of 191 mAh g− 1 under a 20 mA g− 1 current rate, and then increases to the maximum value of 250 mAhg− 1. The discharge plateau of 2.5 V and the redox peaks at 2.55, 4.6 V give the electrochemical evidence of the existing Li4Mn5O12 phase, which also results in the higher specific capacity. Formation of partial Li4Mn5O12 phase reduces the initial discharge voltage, but mitigates the decay rate of voltage at the higher discharge current rate.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lee J, Urban A, Li X, Su D, Hautier G G, Ceder G (2014) Science 343:519–522

    Article  CAS  Google Scholar 

  2. Sathiya M, Abakumov AM, Foix D, Rousse G, Ramesha K, Saubanère M, Doublet ML, VezinH H, Laisa CP, Prakash AS, Gonbeau D, Tendeloo GV, Tarascon JM (2015) Nat Mater14:230–238

    Article  CAS  Google Scholar 

  3. Li Q, Li GS, Fu CC, Luo D, Fan JM, Xie DJ, Li LP (2015) J Mater Chem A 3:10592–15602

    Article  CAS  Google Scholar 

  4. B. Xu, C. R. Fell, M. Chi and Y. S. Meng, Energy Environ Sci 4 (2011) 2223–2233

    Article  CAS  Google Scholar 

  5. Chen L, Su YF, Chen S, Li N, Bao LY, Li WK, Wang Z, Wang M, Wu F (2014) Adv Mater 26:6756–6760

    Article  CAS  Google Scholar 

  6. Shen CH, Shen SY, Fu F, Shi CG, Zhang HY, Pierre MJ, Su H, Wang Q, Xu BB, Huang L, Li JT, Sun SG (2015) J Mater Chem A 3:12220–12229

    Article  CAS  Google Scholar 

  7. Gu M, Belharouak I, Zheng J, Wu H, Xiao J, Genc A, Amine K, Thevuthasan S, Baer DR, Zhang JG, Browning ND, Liu J, Wang C (2013) ACS Nano 7(1):760–767

    Article  CAS  Google Scholar 

  8. Wu F, Li N, Su YF, Shou HF, Bao LY, Yang W, Zhang LJ, An R, Chen S (2013) Adv Mater 25:3722–3726

    Article  CAS  Google Scholar 

  9. Zheng J, Kan WH, Manthiram A (2015) ACS Appl Mater Interfaces 7(12):6926–6934

    Article  CAS  Google Scholar 

  10. Yuan T, Liu HQ, Gu YJ, Cui HZ, Wang YM (2016) J Appl Phys A 122(9)812

    Article  Google Scholar 

  11. McCalla E, Rowe AW, Shunmugasundaram R, Dahn JR (2013) Chem Mater 25:989–999

    Article  CAS  Google Scholar 

  12. Wang ZY, Li B, Ma J, Xia DG RSC Adv (2014) 4 15825–15829

    Article  CAS  Google Scholar 

  13. Liu JL, Hou MJ, Yi J, Guo SS, Wang CX, Xia YY (2014) Energy Environ Sci 7:705–714.

    Article  CAS  Google Scholar 

  14. Zhao YJ, Ren WF, Wu R, Yue YY, Sun YC (2015) Chem Eur J 21:7503–7510

    Article  Google Scholar 

  15. Chen CH, Shen SY, Fu F, Shi CG, Zhang HY, Pierre MJ, Su H, Wang Q, Xu BB, Huang L, Li JT, Sun SG (2015) J Mater Chem A 3:12220–12229

    Article  Google Scholar 

  16. Huang XK, Zhang QS, Chang HT, Gan JL, Yue HJ, Yang Y (2009) Electrochem J Soc 156(3):A162–A168

    Article  CAS  Google Scholar 

  17. Kang SH, Thackeray MM (2009) Electrochem Commun 11(4):748–751

    Article  CAS  Google Scholar 

  18. Ammundsen B, Paulsen J (2001) Adv Mater13:943

    Article  CAS  Google Scholar 

  19. Deng YP, Fu F, Z G Wu et al (2016) J Mater Chem A4:257

    Article  CAS  Google Scholar 

  20. Johnson CS, Li NC, Lefief C, Vaughey JT, Thackeray MM (2008) Chem Mater 20(19):6095–6106

    Article  CAS  Google Scholar 

  21. Buchholz D, Li J, Passerini S, Aquilanti G, Wang DD, Giorgetti M (2015) Chem Electro Chem 2:85–97

    CAS  Google Scholar 

  22. Lin F, Markus IM, Nordlund D, Weng T, Asta MD, Xin L, Doeff MM (2014) Nat Commun 5:3529

    Google Scholar 

  23. Wang ZY, Li B, Ma J, Xia DG (2014) RSC Adv 4:15825–15829

    Article  CAS  Google Scholar 

  24. Nayak PK, Grinblat J, Levi M, Haik O, Levi E, Sun YK, Munichandraiah N, Aurbach D (2015) J Mater Chem A 3:14598–14608

    Article  CAS  Google Scholar 

  25. Croy JR, Kim D, Balasubramanian M (2012) J Electrochem Soc 159(6):A781–A790

    Article  CAS  Google Scholar 

  26. Zheng J, Gu M, Xiao J, Zuo P, Wang C, Zhang JG (2013) Nano Lett 13(8):3824–3830

    Article  CAS  Google Scholar 

  27. Gu M, Belharouak I, Zheng J (2013) ACS Nano 7(1):760–767

    Article  CAS  Google Scholar 

  28. Song B, Liu H, Liu Z, Xiao P, Lai MO, Lu L (2013) Sci Rep 3:3094

    Article  Google Scholar 

  29. Croy JR, Kim D, Balasubramanian M, Gallagher K, Kang SH, Thackeray MM (2012) J Electrochem Soc 159:A781

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by National High Technology Research and Development Program of China (863 Program, No. 2015AA034404), National Natural Science Foundation of China (51641206), Shandong Natural Science Foundation Project (Grant No. ZR2015EM013), and a Project of Shandong Province Higher Educational Science and Technology Program (Grant No. YA07).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to HongQuan Liu, YiJie Gu or HongZhi Cui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Su, Q., Yuan, C. et al. Phase structure and electrochemical performance control of 0.5Li2MnO3⋅0.5LiNi1/3Co1/3Mn1/3O2 based on the concentration adjustment in a molten salt synthesis system. J Appl Electrochem 47, 691–698 (2017). https://doi.org/10.1007/s10800-017-1070-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-017-1070-5

Keywords

Navigation