Skip to main content
Log in

Environmental Biotechnology Research: Challenges and Opportunities in Latin America

  • Review Paper
  • Published:
Journal of Agricultural and Environmental Ethics Aims and scope Submit manuscript

Abstract

Latin American countries have an extensive biological diversity and a tropical or subtropical climate. This condition has advantages for development and for the implementation of biotechnological solutions for environmental problems. Environmental biotechnology could be used to enhance biodegradation, waste recovery, and also for the development of biotechnology-based products to diagnose and reduce environmental impacts such as biosensors, biopesticides, biofertilizers and biofuels. To generate new environmental biotechnological products, Latin American countries must not only overcome the known limitations associated with investment in science and technology and in human resource training, but also develop their own vision of using environmental biotechnology, adapted to the economic, and environmental context. Biotechnology used wisely as a tool for promoting sustainable development in Latin American countries may also contribute to the solution of problems that represent potential risks to society and the environment in general. This document discusses the context of the research and innovation in Latin American countries around environmental biotechnology and also reviews perspectives for the improvement of these developments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abramovich, R. S. (2013). Nitrogen fixing potential in extreme environments. In School of biotechnology and biomolecular sciences. University of New South Wales Sydney, Australia. p. 241.

  • Beekman, V. (2004). Environmental utilization space between science and politics. Journal of Agricultural and Environmental Ethics, 17, 293–300.

    Article  Google Scholar 

  • Bota, A. A. (2003). El impacto de la biotecnología en America Latina: Espacios de participación social. Acta Bioethica, 9, 21–38.

    Google Scholar 

  • Christen, R. (2008). Global sequencing: A review of current molecular data and new methods available to assess microbial diversity. Microbes and Environments, 23, 253–268.

    Article  Google Scholar 

  • De Sá, L. R. V., Cammarota, M. C., De Oliveira, T. C., et al. (2013). Pentoses, hexoses and glycerin as substrates for biohydrogen production: An approach for Brazilian biofuel integration. International Journal of Hydrogen Energy, 38, 2986–2997.

    Article  Google Scholar 

  • Divakara, B. N., Upadhyaya, H. D., Wani, S. P., et al. (2010). Biology and genetic improvement of Jatropha curcas L.: A review. Applied Energy, 87, 732–742.

    Article  Google Scholar 

  • Dunlop, M. J., Dossani, Z. Y., & Szmidt, H. L. et al. (2011). Engineering microbial biofuel tolerance and export using efflux pumps. Molecular Systems Biology, 7(1). doi:10.1038/msb.2011.21.

  • Gavrilescu, M. (2010). Environmental biotechnology: Achievements, opportunities and challenges. Dynamic Biochemistry, Process Biotechnology and Molecular Biology, 4, 1–36.

    Google Scholar 

  • Ivanov, V., Wang, L. K., Ivanov, V. et al. (2010). Microbiology of environmental engineering systems. In Environmental biotechnology. Handbook of environmental engineering. Humana Press, pp. 19-79-79.

  • Leff, E. (2012). Pobreza, gestión participativa de los recursos naturales y desarrollo sustentable en las comunidades rurales del Tercer Mundo. Una visión desde América Latina. Problemas del Desarrollo, 26, 223–240.

    Google Scholar 

  • Li, T., Guo, S., Wu, B. et al. (2014). Effect of polarity-reversal and electrical intensity on the oil removal from soil. Journal of Chemical Technology & Biotechnology. doi:10.1002/jctb.4312.

  • Liao, D., Li, X., Yang, Q., et al. (2007). Enrichment and granulation of Anammox biomass started up with methanogenic granular sludge. World Journal of Microbiology & Biotechnology, 23, 1015–1020.

    Article  Google Scholar 

  • Liguori, R., Amore, A., & Faraco, V. (2013). Waste valorization by biotechnological conversion into added value products. Applied Microbiology and Biotechnology, 97, 6129–6147.

    Article  Google Scholar 

  • Lino, F. A. M., & Ismail, K. A. R. (2011). Energy and environmental potential of solid waste in Brazil. Energy Policy, 39, 3496–3502.

    Article  Google Scholar 

  • Maroušek, J., Itoh, S., Higa, O., et al. (2013a). Enzymatic hydrolysis enhanced by pressure shockwaves opening new possibilities in Jatropha Curcas L. processing. Journal of Chemical Technology and Biotechnology, 88, 1650–1653.

    Article  Google Scholar 

  • Maroušek, J., Kondo, Y., Ueno, M., et al. (2013b). Commercial-scale utilization of greenhouse residues. Biotechnology and Applied Biochemistry, 60, 253–258.

    Article  Google Scholar 

  • Martins, L. F., Antunes, L. P., Pascon, R. C., et al. (2013). Correction: Metagenomic analysis of a tropical composting operation at the São Paulo Zoo Park reveals diversity of biomass degradation functions and organisms. PLoS ONE, 8, 1–13.

    Article  Google Scholar 

  • Ministerio de Ambiente VyDT-M (2010). Política Nacional para la Gestión Integral del Recurso Hídrico. Bogotá, D.C. Colombia. Ministerio de Ambiente, Vivienda y Desarrollo Territorial- MAVDT. p. 124.

  • Mora, L. E., Colina, J., & Moncayo-Lasso, A. et al. (2005). Development of coupled solar biological system for the disinfection and elimination of organic contaminants in drinking water in rural areas of Colombia. In CINARA (ed) De la accion local a las metas globales. CINARA, Cali Colombia. pp. 1–8.

  • OECD (2014). PISA 2012 Results: What students know and can do: Student performance in mathematics, Reading and Science (Volume I), http://www.oecd.org/pisa/keyfindings/pisa-2012-results-volume-i.htm access 30 mars 2014.

  • Oren, A., Wang, L. K., Ivanov, V. et al. (2010). Microbial metabolism: Importance for environmental biotechnology. In Environmental biotechnology. Handbook of environmental engineering. Humana Press, pp. 193-255-255.

  • Patterson, J. (2012). Exploitation of unconventional fossil fuels: Enhanced greenhouse gas emissions. In Liu, G. (Ed.)Greenhouse gasesemission, measurement and management.. InTech. pp. 147–168.

  • Pérez-Peláez, N., Peña-Varón, M., & Sanabria, J. (2011). Comunidades bacterianas involucradas en el ciclo del nitrógeno en humedales construidos. Revista Ingeniería y Competitividad, 13, 11–17.

    Google Scholar 

  • Ramamurthy, T., Bhattacharya, S. K., Delgado, G. et al. (2011). The re-emergence of Cholera in the Americas. In Epidemiological and molecular aspects on cholera. Infectious disease. New York: Springer pp. 79-95-95.

  • Roca, W. (2003). Estudio de las capacidades biotecnológicas e institucionales para el aprovechamiento de la biodiversidad en los paises de la comunidad Andina, Peru. pp. 285.

  • Sanabria, J., Acevedo, D., Morales, M., et al. (2010). Improvement of methane production using photo-Fenton as pretreatment of vinasses. Manizales, Colombia: Congreso Iberoameicano de Biotecnología.

    Google Scholar 

  • UNEP (2010). Annual Report 2009: Seizing the green economy UNEP.

  • Vázquez, S., Nogales, B., Ruberto, L., et al. (2013). Characterization of bacterial consortia from diesel-contaminated Antarctic soils: Towards the design of tailored formulas for bioaugmentation. International Biodeterioration and Biodegradation, 77, 22–30.

    Article  Google Scholar 

  • Voget-Kleschin, L. (2013). Large-scale land acquisition: Evaluating its environmental aspects against the background of strong sustainability. Journal of Agricultural and Environmental Ethics, 26, 1105–1126.

    Article  Google Scholar 

  • Watanabe, K., Futamata, H., & Harayama, S. (2002). Understanding the diversity in catabolic potential of microorganisms for the development of bioremediation strategies. Antonie van Leeuwenhoek, 81, 655–663.

    Article  Google Scholar 

  • World Bank (2014). Research and development expenditure (% of GDP) http://data.worldbank.org/indicator/GB.XPD.RSDV.GD.ZS/countries access 30 mars 2014.

Download references

Acknowledgments

To Dr Huub Hitzen from the UNESCO-IHE for important contributions to this paper. And my colleagues of the engineering faculty by give me the opportunity of learning about environmental engineering. The author thanks Luis Andrés Betancourt and Julien Wist for their invaluable contribution to graphical material.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janeth Sanabria.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanabria, J. Environmental Biotechnology Research: Challenges and Opportunities in Latin America. J Agric Environ Ethics 27, 681–694 (2014). https://doi.org/10.1007/s10806-014-9502-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10806-014-9502-2

Keywords

Navigation